85
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Piezoelectricity and electrochemical effect of PVDF thermoplastic-based composites

& ORCID Icon
Accepted 24 Aug 2023, Published online: 20 Sep 2023

References

  • Le TH, Kim Y, Yoon H. Electrical and electrochemical properties of conducting polymers. Polymers. 2017;9(4):150. doi: 10.3390/polym9040150
  • Soliman E, Al-Haik M, Taha MR. On and off-axis tension behavior of fiber reinforced polymer composites incorporating multi-walled carbon nanotubes. J Compos Mater. 2012;46(14):1661–1675. doi: 10.1177/0021998311422456
  • Liu X, Matsumura K, Tomita Y, et al. Nonlinear optical responses of nanoparticle-polymer composites incorporating organic (hyperbranched polymer)-metallic nanoparticle complex. J Appl Phys. 2010;108(7). doi: 10.1063/1.3489996
  • Vicente J, Costa P, Lanceros-Mendez S, et al. Electromechanical properties of PVDF-based polymers reinforced with nanocarbonaceous fillers for pressure sensing applications. Materials. 2019;12(21):3545. doi: 10.3390/ma12213545
  • Kapat K, Shubhra QTH, Zhou M, et al. Piezoelectric nano-biomaterials for biomedicine and tissue regeneration. Adv Funct Mater. 2020;30(44):30(44. doi: 10.1002/adfm.201909045
  • El Mohajir BE, Heymans N. Changes in structural and mechanical behaviour of PVDF with processing or thermal treatment. 2. Evolution of mechanical behaviour. Polymer. 2001;42(16):7017–7023. doi: 10.1016/S0032-3861(01)00184-7
  • Koroglu L, Ayas E, Ay N. 3D printing of polyvinylidene fluoride based piezoelectric nanocomposites: an overview. Macromol Mater Eng. 2021;306(10). doi: 10.1002/mame.202100277
  • Mishra S, Kumaran KT, Sivakumaran R, et al. Synthesis of PVDF/CNT and their functionalized composites for studying their electrical properties to analyze their applicability in actuation & sensing. Colloids Surf A Physicochem Eng Asp. 2016;509:684–696. doi: 10.1016/j.colsurfa.2016.09.007
  • Ueberschlag P. Features PVDF piezoelectric polymer. Sens Rev. 2001;21(2):118–125. doi: 10.1108/02602280110388315
  • Diani J, Gall K, Gall K. Finite strain 3D thermoviscoelastic constitutive Model. Society. 2006;46(4):486–492. doi: 10.1002/pen.20497
  • Copolymers F, Kometani Y, Yagi T. International Union of Pure Working Party on structure and properties O F commercial polymers * structure and dielectric properties of vinylidene fluoride copolymers. Pure Appl Chem. 1989;61(1):83–90. doi: 10.1351/pac198961010083
  • Sanada K, Tada Y, Shindo Y. Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers. Compos Part A Appl Sci Manuf. 2009;40(6–7):724–730. doi: 10.1016/j.compositesa.2009.02.024
  • Broadhurst MG, Davis GT. Physical basis for piezoelectricity in pvdf. Ferroelectrics. 1984;60(1):3–13. doi: 10.1080/00150198408017504
  • Zhang S, Yu F, Green DJ. Piezoelectric materials for high temperature sensors. J Am Ceram Soc. 2011;94(10):3153–3170. doi: 10.1111/j.1551-2916.2011.04792.x
  • Turner RC, Fuierer PA, Newnham RE, et al. Materials for high temperature acoustic and vibration sensors: a review. Appl Acoust. 1994;41(4):299–324. doi: 10.1016/0003-682X(94)90091-4
  • Schulz MJ, Sundaresan MJ, McMichael J, et al. Piezoelectric materials at elevated temperature. J Intell Mater Syst Struct. 2003;14(11):693–705. doi: 10.1177/1045389X03038577
  • Higashihata Y, Yagi T, Sako J. Piezoelectric properties and applications in the composite system of vinylidene fluoride and trifluoroethylene copolymer and pzt ceramics. Ferroelectrics. 1986;68(1):63–75. doi: 10.1080/00150198608238738
  • Ahluwalia A, Baughman RH, De Rossi D, et al. Microfabricated electroactive carbon nanotube actuators. Smart Structures And Materials 2001: Electroactive Polymer Actuators And Devices. 2001;4329(I):209. doi: 10.1117/12.432647
  • Foster FS, Harasiewicz KA, Sherar MD. A history of medical biological imaging with polyvinylidene fluoride (PVDF) transducers. IEEE Trans Ultrason Ferroelectr Freq Control. 2000;47(6):1363–1371. doi: 10.1109/58.883525
  • Varshney D, Dar MA. Structural and magneto-transport properties of (1 - X)La0.67Sr0.33MnO3(LSMO) + (x)BaTiO3(BTO) composites. J Alloys Compd. 2015;619:122–130. doi: 10.1016/j.jallcom.2014.08.219.
  • Izyumskaya N, Alivov YI, Cho SJ, et al. Processing, structure, properties, and applications of PZT thin films. Critl Rev Solid State Mater Sci. 2007;32(3–4):111–202. doi: 10.1080/10408430701707347
  • Vinogradov A, Holloway F. Electro-mechanical properties of the piezoelectric polymer PVDF. Ferroelectrics. 1999;226(1–4):169–181. doi: 10.1080/00150199908230298
  • Gardiner J. Fluoropolymers: origin, production, and industrial and commercial applications. Aus J Chem. 2015;68(1):13–22. doi: 10.1071/CH14165
  • Ameduri B. (Co) polymers of Chlorotri fl uoroethylene: synthesis, properties, and applications. Chemical Reviews. 2011;114(2):927–980.
  • Stoica P. Guest editorial. Circuit Syst Signal Proc. 2002;21(1):iii–iv. doi: 10.1007/bf01211645
  • Eatemadi A, Daraee H, Karimkhanloo H, et al. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett. 2014;9(1):1–13. doi: 10.1186/1556-276X-9-393
  • Lebedev BV. Application of precise calorimetry in study of polymers and polymerization processes. Thermochim Acta. 1997;297(1–2):143–149. doi: 10.1016/S0040-6031(97)00066-X
  • Cheng CL, Wan CC, Wang YY. Microporous PVdF-HFP based gel polymer electrolytes reinforced by PEGDMA network. Electrochem commun. 2004;6(6):531–535. doi: 10.1016/j.elecom.2004.04.001
  • Wang X, Jiang M, Zhou Z, et al. 3D printing of polymer matrix composites: a review and prospective. Composites. 2017;110:442–458. doi: 10.1016/j.compositesb.2016.11.034
  • Zeng S, Li X, Li M, et al. Flexible PVDF/CNTs/Ni@CNTs composite films possessing excellent electromagnetic interference shielding and mechanical properties under heat treatment. Carbon. 2019;155:34–43. doi: 10.1016/j.carbon.2019.08.024
  • Hassanzadeh-Aghdam MK. Evaluating the effective creep properties of graphene-reinforced polymer nanocomposites by a homogenization approach. Compos Sci Technol. 2021;209:108791. doi: 10.1016/j.compscitech.2021.108791.
  • Hassanzadeh-Aghdam MK, Mahmoodi MJ, Ansari R. Creep performance of CNT polymer nanocomposites-an emphasis on viscoelastic interphase and CNT agglomeration. Composites. 2019;168:274–281. doi: 10.1016/j.compositesb.2018.12.093.
  • Haghgoo M, Ansari R, Hassanzadeh-Aghdam MK. The effect of nanoparticle conglomeration on the overall conductivity of nanocomposites. Int J Eng Sci. 2020;157:103392. doi: 10.1016/j.ijengsci.2020.103392.
  • Han X, Yang D, Yang C, et al. Carbon fiber reinforced PEEK composites based on 3D-Printing technology for orthopedic and dental applications. 2019;pp. 1–17. doi: 10.3390/jcm8020240
  • Authors F, A A, F L. 3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance. Open Dent J. 2017;11:266–275. doi: 10.2174/1874210601711010266.
  • Calignano F, Lorusso M, Roppolo I. Investigation of the mechanical properties of a carbon fibre-reinforced nylon filament for 3D printing. Machines. 2020;8:52. doi: 10.3390/machines8030052.
  • Chen K, Yu L, Cui Y, et al. Thin-walled structures optimization of printing parameters of 3D-printed continuous glass fiber reinforced polylactic acid composites. Thin Walled Struct. 2021;164(April):107717. doi: 10.1016/j.tws.2021.107717
  • Rodrı H, Romero A, Ledezma J, et al. Novel antibacterial electrospun mats based on poly (D, L -lactide) nanofibers and zinc oxide nanoparticles. J Mater Sci. 2014;49:8373–8385. doi: 10.1007/s10853-014-8547-y.
  • Yue C, Li M, Liu Y, et al. Three-dimensional printing of cellulose nanofibers reinforced PHB/PCL/Fe 3 O 4 magneto-responsive shape memory polymer composites with excellent mechanical properties. Additive Manuf. 2021;46(April):102146. doi: 10.1016/j.addma.2021.102146
  • Hufenbach BW, Gude M, Geller S. Cellular fiber- R einforced polyurethane composites with sensory properties. Adv Eng Mater. 2014;3(3):272–275. doi: 10.1002/adem.201300080
  • Otto GP, Moisés MP, Carvalho G, et al. Mechanical properties of a polyurethane hybrid composite with natural lignocellulosic fibers. Composites Part B. 2016;110:459–465. doi: 10.1016/j.compositesb.2016.11.035.
  • Kumar V, Ramkumar J, Aravindan S, et al. Fabrication and characterization of ABS nano composite reinforced by nano sized alumina particulates. Int J Plast Technol. n.d;13(2):133–149. doi: 10.1007/s12588-009-0011-5
  • Unterweger C, Duchoslav J, Stifter D, et al. Characterization of carbon fiber surfaces and their impact on the mechanical properties of short carbon fiber reinforced polypropylene composites. Compos Sci Technol. 2015;108:41–47. doi: 10.1016/j.compscitech.2015.01.004
  • Sharma R, Singh R, Batish A. Study on barium titanate and graphene reinforced PVDF matrix for 4D applications. J Thermoplast Composite Mater. 2021;34(9):1234–1253. doi: 10.1177/0892705719865004
  • Rider AN, An Q, Brack N, et al. Polymer nanocomposite - fiber model interphases: influence of processing and interface chemistry on mechanical performance. Chem Eng J. 2015;269:121–134. doi: 10.1016/j.cej.2015.01.093
  • Depeursinge A, Racoceanu D, Iavindrasana J, et al. Fusing visual and clinical information for lung tissue classification in high-resolution computed tomography. Artif Intell Med. 2010;50(1):13–21. doi: 10.1016/j.artmed.2010.04.006
  • Razzaq H, Nawaz H, Siddiq A. A brief review on nano composites based on PVDF with nanostructured TiO2 as filler. Madridge J Nanotechnol Nanosci. 2016;1(1):22–28. doi: 10.18689/mjnn-1000107
  • You SJ, Semblante GU, Lu SC, et al. Evaluation of the antifouling and photocatalytic properties of poly (vinylidene fluoride) plasma-grafted poly (acrylic acid) membrane with self-assembled TiO2. J Hazard Mater. 2012;237:10–19. doi: 10.1016/j.jhazmat.2012.07.071.
  • Morihama ACD, Mierzwa JC. Clay nanoparticles effects on performance and morphology of poly (vinylidene fluoride) membranes. Braz J Chem Eng. 2014;31(1):79–93. doi: 10.1590/S0104-66322014000100009
  • Patnam H, Dudem B, Graham SA, et al. High-performance and robust triboelectric nanogenerators based on optimal microstructured poly(vinyl alcohol) and poly(vinylidene fluoride) polymers for self-powered electronic applications. Energy. 2021;223:120031. doi: 10.1016/j.energy.2021.120031
  • Yaqoob U, Uddin ASMI, Chung GS. A novel tri-layer flexible piezoelectric nanogenerator based on surface- modified graphene and PVDF-BaTiO 3 nanocomposites. Appl Surface Sci. 2017;405:420–426. doi: 10.1016/j.apsusc.2017.01.314
  • Patel S, Kumar R. Synthesis and characterization of magnesium ion conductivity in PVDF based nanocomposite polymer electrolytes disperse with MgO. Journal of Alloys and Compounds. 2019 Jun 15;789:6–14.
  • Sun C, Shi J, Wang X. Fundamental study of mechanical energy harvesting using piezoelectric nanostructures. J Appl Phys. 2010;108(3). doi: 10.1063/1.3462468
  • Xia W, Zhang Z. PVDF-based dielectric polymers and their applications in electronic materials. IET Nanodielectr. 2018;1(1):17–31. doi: 10.1049/iet-nde.2018.0001
  • Oshiki M, Fukada E. Inverse piezoelectric effect and electrostrictive effect in polarized poly(vinylidene fluoride) films. J Mater Sci. 1975;10(1):1–6. doi: 10.1007/BF00541025
  • De Jong M, Chen W, Geerlings H, et al. A database to enable discovery and design of piezoelectric materials. Sci Data. 2015;2:1–13. doi: 10.1038/sdata.2015.53.
  • Mohamed NS, Arof AK. Investigation of electrical and electrochemical properties of PVDF-based polymer electrolytes. J Power Sources. 2004;132(1–2):229–234. doi: 10.1016/j.jpowsour.2003.12.031
  • Sharma ND, Maranganti R, Sharma P. On the possibility of piezoelectric nanocomposites without using piezoelectric materials. J Mech Phys Solids. 2007;55(11):2328–2350. doi: 10.1016/j.jmps.2007.03.016
  • Harrington SA, Zhai J, Denev S, et al. Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite-induced strain. Nature Nanotechnol. 2011;6(8):491–495. doi: 10.1038/nnano.2011.98
  • Guimard NK, Gomez N, Schmidt CE. Conducting polymers in biomedical engineering. Prog Polym Sci (Oxford). 2007;32(8–9):876–921. doi: 10.1016/j.progpolymsci.2007.05.012
  • Patrick A, Glasse M, Latham R, et al. Novel solid state polymeric batteries. Solid State Ion. 1986;18–19(PART 2):1063–1067. doi: 10.1016/0167-2738(86)90309-7
  • Ram R, Rahaman M, Khastgir D. Electrical properties of polyvinylidene fluoride (PVDF)/multi-walled carbon nanotube (MWCNT) semi-transparent composites: modelling of DC conductivity. Compos Part A Appl Sci Manuf. 2015;69:30–39. doi: 10.1016/j.compositesa.2014.11.003.
  • Bhosale ME, Chae S, Kim JM, et al. Organic small molecules and polymers as an electrode material for rechargeable lithium ion batteries. ?J Mater Chem A. 2018;6(41):19885–19911. doi: 10.1039/c8ta04906h

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.