1,084
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Machining aerospace aluminium alloy with cryo-treated and untreated HSS cutting tools

ORCID Icon
Pages 2664-2689 | Accepted 15 Oct 2023, Published online: 24 Oct 2023

References

  • Aamir M, Giasin K, Tolouei-Rad M, et al. A review: drilling performance and hole quality of aluminium alloys for aerospace applications. J Mater Res Technol. 2020;9(6):12484–12500. doi: 10.1016/j.jmrt.2020.09.003
  • Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys. Materials & Design (1980-2015). 2014;56:862–871. doi: 10.1016/j.matdes.2013.12.002
  • Aamir M, Tolouei-Rad M, Giasin K, et al. Recent advances in drilling of carbon fiber–reinforced polymers for aerospace applications: a review. Int J Adv Manuf Technol. 2019;105(5):2289–2308. doi: 10.1007/s00170-019-04348-z
  • Sun D, Lemoine P, Keys D, et al. Hole-making processes and their impacts on the microstructure and fatigue response of aircraft alloys. Int J Adv Manuf Technol. 2018;94(5):1719–1726. doi: 10.1007/s00170-016-9850-3
  • Zhu Z, Guo K, Sun J, et al. Evaluation of novel tool geometries in dry drilling aluminium 2024-T351/titanium Ti6Al4V stack. J Mater Process Technol. 2018;259:270–281. doi: 10.1016/j.jmatprotec.2018.04.044
  • Kalidas S, DeVor RE, Kapoor SG. Experimental investigation of the effect of drill coatings on hole quality under dry and wet drilling conditions. Surf Coat Technol. 2001;148(2–3):117–128. doi: 10.1016/S0257-8972(01)01349-4
  • Aamir M, Tolouei-Rad M, Giasin K, et al. Machinability of Al2024, Al6061, and Al5083 alloys using multi-hole simultaneous drilling approach. J Mater Res Technol. 2020;9(5):10991–11002. doi: 10.1016/j.jmrt.2020.07.078
  • Sarikaya M, Gupta MK, Tomaz I, et al. Cooling techniques to improve the machinability and sustainability of light-weight alloys: a state-of-the-art review. J Manuf Processes. 2021;62:179–201. doi: 10.1016/j.jmapro.2020.12.013
  • Bhowmick S, Alpas AT. Minimum quantity lubrication drilling of aluminium–silicon alloys in water using diamond-like carbon coated drills. Int J Mach Tools Manuf. 2008;48(12–13):1429–1443. doi: 10.1016/j.ijmachtools.2008.04.010
  • Leep HR. Influence of cutting fluids on surface finish of holes drilled into aluminium 390. J Synth Lubr. 1990;6(4):325–338. doi: 10.1002/jsl.3000060406
  • Bono MJ. Experimental and analytical issues in drilling. USA: University of Michigan; 2002.
  • Da Silva FJ, Franco SD, Machado AR, et al. Performance of cryogenically treated HSS tools. Wear. 2006;261(5–6):674–685. doi: 10.1016/j.wear.2006.01.017
  • Podgornik B, Paulin I, Zajec B, et al. Deep cryogenic treatment of tool steels. J Mater Process Technol. 2016;229:398–406. doi: 10.1016/j.jmatprotec.2015.09.045
  • Rosenberg N. Technological change in the machine tool industry, 1840–1910. J Econ Hist. 1963;23(4):414–443. doi: 10.1017/S0022050700109155
  • Molinari A, Pellizzari M, Gialanella S, et al. Effect of deep cryogenic treatment on the mechanical properties of tool steels. J Mater Process Technol. 2001;118(1–3):350–355. doi: 10.1016/S0924-0136(01)00973-6
  • Lal DM, Renganarayanan S, Kalanidhi A. Cryogenic treatment to augment wear resistance of tool and die steels. Cryogenics. 2001;41(3):149–155. doi: 10.1016/S0011-2275(01)00065-0
  • Singh G, Pandey K. Effect of cryogenic treatment on properties of materials: a review. Proc Inst Mech Eng Part E. 2022;236(4):1758–1773. doi: 10.1177/09544089221090189
  • Harish S, Bensely A, Lal DM, et al. Microstructural study of cryogenically treated en 31 bearing steel. J Mater Process Technol. 2009;209(7):3351–3357. doi: 10.1016/j.jmatprotec.2008.07.046
  • Akhbarizadeh A, Shafyei A, Golozar M. Effects of cryogenic treatment on wear behavior of D6 tool steel. Mater Design. 2009;30(8):3259–3264. doi: 10.1016/j.matdes.2008.11.016
  • Bensely A, Prabhakaran A, Lal DM, et al. Enhancing the wear resistance of case carburized steel (en 353) by cryogenic treatment. Cryogenics. 2005;45(12):747–754. doi: 10.1016/j.cryogenics.2005.10.004
  • Çiçek A, Kıvak T, Uygur I, et al. Performance of cryogenically treated M35 HSS drills in drilling of austenitic stainless steels. Int J Adv Manuf Technol. 2012;60(1):65–73. doi: 10.1007/s00170-011-3616-8
  • Akincioğlu S, Gökkaya H, Uygur İ. A review of cryogenic treatment on cutting tools. Int J Adv Manuf Technol. 2015;78(9–12):1609–1627. doi: 10.1007/s00170-014-6755-x
  • Adin MŞ. Performances of cryo-treated and untreated cutting tools in machining of AA7075 aerospace aluminium alloy. Eur Mech Sci. 2023;7(2):70–81. doi: 10.26701/ems.1270937
  • Šolić S, Cajner F, Panjan P. Influence of deep cryogenic treatment of high speed steel substrate on TiAlN coating properties. Materialwissenschaft und Werkstofftechnik. 2013;44(12):950–958. doi: 10.1002/mawe.201300168
  • Kara F, Takmaz A. Optimization of cryogenic treatment effects on the surface roughness of cutting tools. Mater Test. 2019;61(11):1101–1104. doi: 10.3139/120.111427
  • Özbek NA, Özbek O. Effect of cryogenic treatment holding time on mechanical and microstructural properties of Sverker 21 steel. Mater Test. 2022;64(12):1809–1817. doi: 10.1515/mt-2022-0207
  • Isaak CJ, Reitz W. The effects of cryogenic treatment on the thermal conductivity of GRCop-84. Mater Manuf Processes. 2007;23(1):82–91. doi: 10.1080/10426910701524626
  • Jiang Y, Chen D, Chen Z, et al. Effect of cryogenic treatment on the microstructure and mechanical properties of AZ31 magnesium alloy. Mater Manuf Processes. 2010;25(8):837–841. doi: 10.1080/10426910903496862
  • Gill SS. Machining performance of cryogenically treated AISI M2 high speed steel tools. J Eng Res Studies. 2012;3(2):45–49.
  • Shirbhate A, Deshpande N, Puri Y. Effect of cryogenic treatment on cutting torque and surface finish in drilling operation with AISI M2 high speed steel. Int J Mech Eng Rob Res. 2012;1(2):50–58.
  • Firouzdor V, Nejati E, Khomamizadeh F. Effect of deep cryogenic treatment on wear resistance and tool life of M2 HSS drill. J Mater Process Technol. 2008;206(1–3):467–472. doi: 10.1016/j.jmatprotec.2007.12.072
  • Podgornik B, Leskovšek V, Vižintin J. Influence of deep-cryogenic treatment on tribological properties of P/M high-speed steel. Mater Manuf Processes. 2009;24(7–8):734–738. doi: 10.1080/10426910902809339
  • Kurt M, Bagci E, Kaynak Y. Application of Taguchi methods in the optimization of cutting parameters for surface finish and hole diameter accuracy in dry drilling processes. Int J Adv Manuf Technol. 2009;40(5):458–469. doi: 10.1007/s00170-007-1368-2
  • Ozsoy N. Prediction and optimization of thrust force during the drilling of AISI 2080 steel. Mater Test. 2022;64(4):602–609. doi: 10.1515/mt-2021-2098
  • Schulz A, Cui C, Steinbacher M, et al. Effects of cryogenic treatment on the microstructure and mechanical properties of high-alloyed tool steels. HTM J Heat Treat Mater. 2020;75(5):73–93. doi: 10.3139/105.110422
  • Savaş AF, Öktem H, Öztürk B, et al. Energy consumption, mechanical and metallographic properties of cryogenically treated tool steels. Open Chem. 2023;21(1):20220322. doi: 10.1515/chem-2022-0322
  • Yang W, Tarng Y. Design optimization of cutting parameters for turning operations based on the Taguchi method. J Mater Process Technol. 1998;84(1–3):122–129. doi: 10.1016/S0924-0136(98)00079-X
  • Taguchi G. System of experimental design, quality resources. Vol. 108. New York, USA: UNIPUB/Krauss International; 1987.
  • Montgomery DC. Design and analysis of experiments. 9th ed. USA: John wiley & sons; 2017.
  • Köklü U. Optimization of kerf and surface roughness of al 7 475-T7 351 alloy machined with WEDM process using the grey-based Taguchi method. Metalurgija. 2012;51(1):47–50.
  • Göloğlu C, Arslan Y. Zigzag machining surface roughness modelling using evolutionary approach. J Intell Manuf. 2009;20(2):203–210. doi: 10.1007/s10845-008-0222-1
  • Markopoulos AP, Davim JP. Advanced machining processes: innovative modeling techniques. FL, USA: CRC Press, Taylor & Francis; 2017. p. 1–351.
  • Aurich JC, Dornfeld D, Arrazola P, et al. Burrs—analysis, control and removal. CIRP Ann. 2009;58(2):519–542. doi: 10.1016/j.cirp.2009.09.004
  • Kim J, Dornfeld DA. Development of an analytical model for drilling burr formation in ductile materials. J Eng Mater Technol. 2002;124(2):192–198. doi: 10.1115/1.1429937
  • Ko S-L, Chang J-E, Yang G-E. Burr minimizing scheme in drilling. J Mater Process Technol. 2003;140(1–3):237–242. doi: 10.1016/S0924-0136(03)00719-2
  • Gillespie L. Deburring precision miniature parts. Precis eng. 1979;1(4):189–198. doi: 10.1016/0141-6359(79)90099-0
  • Choi I-H, Kim J-D. Electrochemical deburring system using electroplated CBN wheels. Int J Mach Tools Manuf. 1998;38(1–2):29–40. doi: 10.1016/S0890-6955(97)00027-8
  • Costa ES, MBd S, Machado AR. Burr produced on the drilling process as a function of tool wear and lubricant-coolant conditions. J Braz Soc Mech Sci Eng. 2009;31:57–63. doi: 10.1590/S1678-58782009000100009
  • Senthilkumar D, Rajendran I. Optimization of deep cryogenic treatment to reduce wear loss of 4140 steel. Mater Manuf Processes. 2012;27(5):567–572. doi: 10.1080/10426914.2011.593237
  • Das D, Dutta A, Ray K. On the refinement of carbide precipitates by cryotreatment in AISI D2 steel. Philos Mag. 2009;89(1):55–76. doi: 10.1080/14786430802534552
  • Arockia Jaswin M, Mohan Lal D. Optimization of the cryogenic treatment process for en 52 valve steel using the Grey-Taguchi method. Mater Manuf Processes. 2010;25(8):842–850. doi: 10.1080/10426910903536766
  • Vimal AJ, Bensely A, Lal DM, et al. Deep cryogenic treatment improves wear resistance of en 31 steel. Mater Manuf Processes. 2008;23(4):369–376. doi: 10.1080/10426910801938098
  • Kumar TV, Thirumurugan R, Viswanath B. Influence of cryogenic treatment on the metallurgy of ferrous alloys: a review. Mater Manuf Processes. 2017;32(16):1789–1805. doi: 10.1080/10426914.2017.1317790
  • Padmakumar M, Dinakaran D. A review on cryogenic treatment of tungsten carbide (WC-Co) tool material. Mater Manuf Processes. 2021;36(6):637–659. doi: 10.1080/10426914.2020.1843668
  • Davis R, Singh A. Performance study of cryo-treated end mill via wet, cryogenic, and hybrid lubri-coolant-milling induced surface integrity of biocompatible mg alloy AZ91D. Proc Inst Mech Eng Part C J Mech Eng Sci. 2021;235(23):7045–7061. doi: 10.1177/09544062211017160
  • Gökkaya H, Akıncıoğlu S. Effects of cryogenically treated physical vapor deposition-coated tools on the turning performance of nickel-based superalloy. Proc Inst Mech Eng Part E. 2023;237(2):312–325. doi: 10.1177/09544089221103515
  • Akincioğlu S, Gökkaya H, Akincioğlu G, et al. Taguchi optimization of surface roughness in the turning of Hastelloy C22 super alloy using cryogenically treated ceramic inserts. Proc Inst Mech Eng Part C J Mech Eng Sci. 2020;234(19):3826–3836. doi: 10.1177/0954406220917708
  • Koklu U. The drilling machinability of 5083 aluminum under shallow and deep cryogenic treatment. Emerg Mater Res. 2020;9(2):323–330. doi: 10.1680/jemmr.19.00127
  • Çiçek A, Kıvak T, Ekici E. Optimization of drilling parameters using Taguchi technique and response surface methodology (RSM) in drilling of AISI 304 steel with cryogenically treated HSS drills. J Intell Manuf. 2015;26(2):295–305. doi: 10.1007/s10845-013-0783-5
  • Seah K, Rahman M, Yong K. Performance evaluation of cryogenically treated tungsten carbide cutting tool inserts. Proc Inst Mech Eng Part B. 2003;217(1):29–43. doi: 10.1243/095440503762502260
  • Saini A, Pabla B, Dhami S. Developments in cutting tool technology in improving machinability of Ti6Al4V alloy: a review. Proc Inst Mech Eng Part B. 2016;230(11):1977–1989. doi: 10.1177/0954405416640176
  • Rafighi M. Effects of shallow cryogenic treatment on surface characteristics and machinability factors in hard turning of AISI 4140 steel. Proc Inst Mech Eng Part E. 2022;236(5):2118–2130. doi: 10.1177/09544089221083467
  • Dhar N, Kishore NS, Paul S, et al. The effects of cryogenic cooling on chips and cutting forces in turning AISI 1040 and AISI 4320 steels. Proc Inst Mech Eng Part B. 2002;216(5):713–724. doi: 10.1243/0954405021520409
  • Liu D, Gao L, Zhou P. Effects of deep cryogenic treatment on WC-Co cutter performances in milling of superalloy GH536. Adv Mech Eng. 2020;12(5):1687814020918494. doi: 10.1177/1687814020918494
  • Kam M. Effects of deep cryogenic treatment on machinability, hardness and microstructure in dry turning process of tempered steels. Proc Inst Mech Eng Part E. 2021;235(4):927–936. doi: 10.1177/0954408920979446
  • Giasin K, Hodzic A, Phadnis V, et al. Assessment of cutting forces and hole quality in drilling Al2024 aluminium alloy: experimental and finite element study. Int J Adv Manuf Technol. 2016;87(5):2041–2061. doi: 10.1007/s00170-016-8563-y
  • Koklu U. Influence of the process parameters and the mechanical properties of aluminum alloys on the burr height and the surface roughness in dry drilling. Mater Tehnol. 2012;46(2):103–108.
  • Aamir M, Tolouei-Rad M, Giasin K. Multi-spindle drilling of Al2024 alloy and the effect of TiAlN and TiSiN-coated carbide drills for productivity improvement. Int J Adv Manuf Technol. 2021;114(9):3047–3056. doi: 10.1007/s00170-021-07082-7
  • Kalsi NS, Sehgal R, Sharma VS. Cryogenic treatment of tool materials: a review. Mater Manuf Processes. 2010;25(10):1077–1100. doi: 10.1080/10426911003720862
  • SreeramaReddy T, Sornakumar T, VenkataramaReddy M, et al. Machining performance of low temperature treated P-30 tungsten carbide cutting tool inserts. Cryogenics. 2008;48(9–10):458–461. doi: 10.1016/j.cryogenics.2008.06.001
  • SreeramaReddy T, Sornakumar T, VenkataramaReddy M, et al. Machinability of C45 steel with deep cryogenic treated tungsten carbide cutting tool inserts. Int J Refract Metals Hard Mater. 2009;27(1):181–185. doi: 10.1016/j.ijrmhm.2008.04.007
  • Phadke MS. Quality engineering using robust design. Englewood Cliffs, NJ: Prentice-Hill; 1995.
  • Ross PJ. Taguchi techniques for quality engineering: loss function, orthogonal experiments, parameter and tolerance design, 1-279. Boston, USA: ‎ McGraw Hill; 1996.
  • Ratnam M. Factors affecting surface roughness in finish turning. In: Hashmi MSJ, editor. Comprehensive materials finishing. Vol. 1. Netherlands: Elsevier Inc; 2017. p. 1–25.
  • Sreejith P, Ngoi B. Dry machining: machining of the future. J Mater Process Technol. 2000;101(1–3):287–291. doi: 10.1016/S0924-0136(00)00445-3
  • Rivero A, Aramendi G, Herranz S, et al. An experimental investigation of the effect of coatings and cutting parameters on the dry drilling performance of aluminium alloys. Int J Adv Manuf Technol. 2006;28(1):1–11. doi: 10.1007/s00170-004-2349-3
  • Pattnaik SK, Bhoi NK, Padhi S, et al. Dry machining of aluminum for proper selection of cutting tool: tool performance and tool wear. Int J Adv Manuf Technol. 2018;98(1):55–65. doi: 10.1007/s00170-017-0307-0
  • Liu K, Li J, Sun J, et al. Investigation on chip morphology and properties in drilling aluminum and titanium stack with double cone drill. Int J Adv Manuf Technol. 2018;94(5):1947–1956. doi: 10.1007/s00170-017-0988-4
  • Zhu Z, Guo K, Sun J, et al. Evolution of 3D chip morphology and phase transformation in dry drilling Ti6Al4V alloys. J Manuf Processes. 2018;34:531–539. doi: 10.1016/j.jmapro.2018.07.001
  • Astakhov VP. Tribology of metal cutting- tribology and interface engineering series. Oxford: Elsevier Ltd; 2006. p. 52.
  • Sun J, Guo Y. A new multi-view approach to characterize 3D chip morphology and properties in end milling titanium ti–6Al–4V. Int J Mach Tools Manuf. 2008;48(12–13):1486–1494. doi: 10.1016/j.ijmachtools.2008.04.002
  • Aamir M, Tolouei-Rad M, Giasin K, et al. Feasibility of tool configuration and the effect of tool material, and tool geometry in multi-hole simultaneous drilling of Al2024. Int J Adv Manuf Technol. 2020;111(3):861–879. doi: 10.1007/s00170-020-06151-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.