50
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of graphene-oxide and nanosilica on the wear resistance and strength of self-consolidating high-strength cement mortar

, , ORCID Icon &
Accepted 10 Jan 2024, Published online: 23 Jan 2024

References

  • Elsen J. Microscopy of historic mortars—a review. Cem Conc Advn. 2006;36(8):1416–1424. doi: 10.1016/j.cemconres.2005.12.006
  • Kumar V, Singh R, Ahuja IPS, et al. On technological solutions for repair and rehabilitation of heritage sites: a review. Adv Mater Process Technol. 2019;6(1):146–166. doi: 10.1080/2374068X.2019.1709310
  • Mohammadi Y, Singh SP, Kaushik SK. Properties of steel fibrous concrete containing mixed fibres in fresh and hardened state. Cons Build Mat. 2008;22(5):956–965. doi: 10.1016/j.conbuildmat.2006.12.004
  • Naddaf HE, Kazemi R. Experimental evaluation of the effect of mix design ratios on compressive strength of cement mortars containing cement strength class 42.5 and 52.5 MPa. Procedia Manuf. 2018;22:392–398. doi: 10.1016/j.promfg.2018.03.060
  • Boumiz A, Vernet C, Tenoudjit FC. Mechanical properties of cement pastes and mortars at early ages: evolution with time and degree of hydration. Advn Cem Bas Mat. 1996;3(3–4):94–106. doi: 10.1016/1065-7355(95)00072-0
  • Chen X, Wu S, Zhou J. Influence of porosity on compressive and tensile strength of cement mortar. Cons Build Mat. 2013;40:869–874. doi:10.1016/j.conbuildmat.2012.11.072
  • Issa CA, Assaad JJ. Stability and bond properties of polymer-modified self-consolidating concrete for repair applications. Mat Struc. 2017;50(1):28. doi: 10.1617/s11527-016-0921-6
  • Singh MKG, Venkatanarayanan HK. Performance of self-consolidating high-strength mortars developed from Portland pozzolana cement for precast applications. Mat Civ Eng. 2020;32(3):04019375. doi: 10.1061/(ASCE)MT.1943-5533.0003041
  • Sahmaran M, Christiano HA, Yaman IO. The effect of chemical admixtures and mineral additives on the properties of self-compacting mortars. Cem Conc Comp. 2006;28(5):432–440. doi: 10.1016/j.cemconcomp.2005.12.003
  • Xu B, Chen T, Zhang Y, et al. Experimental study on preparation of high-strength mortar with abandoned super fine sand. Advn Eng Res. 2017;129:336–342.
  • Huang R, Li G, Shi C. Preparation of high strength mortar with silica fume and steel fiber. Advn Mater Res. 2013;739:255–257. doi:10.4028/www.scientific.net/AMR.739.255
  • Liao G, Yao W, She A, et al. Interfacial design of nano-TiO2 modified recycled concrete powder for building self-cleaning. Colloids Surf A Physicochem Eng Asp. 2023;661:130925. doi: 10.1016/j.colsurfa.2023.130925
  • Sun H, Wu W, Zhao Y, et al. Mechanical and durability properties of blended OPC mortar modified by low-carbon belite (C2S) nanoparticles. J Clean Prod. 2021;305:127087. doi:10.1016/j.jclepro.2021.127087
  • Almohammad-Albakkar M, Behfarnia K. Effects of the combined usage of micro and nano-silica on the drying shrinkage and compressive strength of the self-compacting concrete. J Sustainable Cement-Based Mater. 2020;10(2):92–110. doi: 10.1080/21650373.2020.1755382
  • Reddy PVRK, Ravi-Parsad D. Graphene oxide reinforced cement concrete – a study on mechanical, durability and microstructure characteristics. Fuller Nanotub Car Nanostruct. 2022;31(3):255–265. doi: 10.1080/1536383X.2022.2141231
  • Shang Y, Zhang D, Yang C, et al. Effect of graphene oxide on the rheological properties of cement pastes. Cons Build Mat. 2015;96:20–28. doi:10.1016/j.conbuildmat.2015.07.181
  • Shamsaei E, Souza FBD, Yao X, et al. Graphene-based nanosheets for stronger and more durable concrete: a review. Cons Build Mat. 2018;183:642–660. doi:10.1016/j.conbuildmat.2018.06.201
  • Sikora P, Lukowski P, Cendrowski K, et al. The effect of nanosilica on the mechanical properties of polymer-cement composites (PCC). Procedia Eng. 2015;108:139–145. doi:10.1016/j.proeng.2015.06.129
  • Zhuang C, Chen Y. The effect of nano-SiO2 on concrete properties: a review. Nanotechnol. 2019;8(1):562–572. doi: 10.1515/ntrev-2019-0050
  • Zhou C, Li F, Hu J, et al. Q.Yu, Enhanced mechanical properties of cement paste by hybrid graphene oxide/carbon nanotubes. Cons Build Mat. 2017;134:336–345. doi:10.1016/j.conbuildmat.2016.12.147
  • Zhao L, Guo X, Liu Y, et al. Synergistic effects of silica nanoparticles/polycarboxylate superplasticizer modified graphene oxide on mechanical behavior and hydration process of cement composites. RSC Adv. 2017;7(27):16688–16702. doi: 10.1039/C7RA01716B
  • Zhao L, Guo X, Ge C, et al. Mechanical behavior and toughening mechanism of polycarboxylate superplasticizer modified graphene oxide reinforced cement composites. Composites Part B. 2017;113:308–316. doi:10.1016/j.compositesb.2017.01.056
  • Rashed AM. A comprehensive overview about the effect of nano-SIO2 on some properties of traditional cementitious materials and alkali-activate fly-ash. Cons Build Mat. 2014;52:437–464. doi:10.1016/j.conbuildmat.2013.10.101
  • Jalal M, Mansouri E, Sharifipour M, et al. Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing SiO2 micro and nanoparticles. Mater Des. 2012;34:389–400. doi:10.1016/j.matdes.2011.08.037
  • Shakiba M, Rahgozar P, Elahi AR, et al. Effect of activated pozzolan with Ca (OH)2 and nano-SiO2 on microstructure and hydration of high-volume natural pozzolan paste. Civ Eng Jour. 2018;4(10):24–37. doi:10.28991/cej-03091171
  • Singh LP, Karade SR, Bhattacharyya SK, et al. Beneficial role of nanosilica in cement-based material – A review. Cons Build Mat. 2013;47:1069–1077. doi:10.1016/j.conbuildmat.2013.05.052
  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Sci. 2004;306(5696):666–669. doi: 10.1126/science.1102896
  • Huang X, Liu LZ, Zhou S, et al. Physical properties and device applications of graphene oxide. Front Phys. 2020;15(3). doi: 10.1007/s11467-019-0937-9
  • Chakraborty M, Hashmi MS. Wonder material graphene: properties, synthesis and practical applications, advances in materials and processing technologies. Adv Mater Process Technol. 2018;4(4):573–602. doi: 10.1080/2374068X.2018.1484998
  • Liu C, Huang X, Wu Y, et al. The effect of graphene oxide on the mechanical properties, impermeability and corrosion resistance of cement mortar containing mineral admixtures. Cons Build Mat. 2021;288:123059. doi: 10.1016/j.conbuildmat.2021.123059
  • Lv S, Ma Y, Qiu C, et al. Effect of graphene oxide nanosheets on microstructure and mechanical properties of cement composites. Cons Build Mat. 2013;49:121–127. doi:10.1016/j.conbuildmat.2013.08.022
  • Wang Y, Yang J, Ouyang D. Effect of graphene oxide on mechanical properties of cement mortar and its strengthening mechanism. Materials. 2019;12(22):3753. doi: 10.3390/ma12223753
  • Du M, Jing H, Gao Y, et al. Carbon nanomaterials enhanced cement-based composites: advances and challenges, nanotechnol. Nanotechnol Rev. 2020;9(1):115–135. doi: 10.1515/ntrev-2020-0011
  • Said AM, Zeidan MS, Bassuoni MT, et al. Properties of concrete incorporating nano-silica. Cons Build Mat. 2012;36:838–844. doi:10.1016/j.conbuildmat.2012.06.044
  • Du H, Du S, Liu X. Durability performances of concrete with nano-silica. Cons Build Mat. 2014;73:705–712. doi:10.1016/j.conbuildmat.2014.10.014
  • Li LG, Zheng JY, Zhu J, et al. Combined usage of micro-silica and nano-silica in concrete: SP demand, cementing efficiencies and synergistic effect. Cons Build Mat. 2018;168:622–632. doi:10.1016/j.conbuildmat.2018.02.181
  • Isfahani FT, Redaelli E, Lollini F, et al. Effects of nanosilica on compressive strength and durability properties of concrete with different water to binder ratios. Adv Mat Sci Eng. 2016;8453567:1–16. doi: 10.1155/2016/8453567
  • Somasri M, Kumar BN. Graphene oxide as nano material in high strength self-compacting concrete. Mater Today Proc. 2021;43:2280–2289. doi:10.1016/j.matpr.2020.12.1085
  • Bjornstrom J, Martinelli A, Matic A, et al. Accelerating effects of colloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement. Chem Phys Lett. 2004;392(1–3):242–248. doi: 10.1016/j.cplett.2004.05.071
  • Sobolev K, Flores I, Torres-Martinez LM, et al. Engineering of SiO2 nanoparticles for optimal performance in nano cement-based materials. Nanotechnol Construct. 2009;3:139–148.
  • Jo BW, Kim CH, Tae GH, et al. Characteristics of cement mortar with nano-SiO2 particles. Cons Build Mat. 2007;21(6):1351–1355. doi: 10.1016/j.conbuildmat.2005.12.020
  • Lu L, Ouyang D. Properties of cement mortar and ultra-high strength concrete incorporating graphene oxide nanosheets. Nanomater. 2017;7(7):187. doi: 10.3390/nano7070187
  • Babak F, Abolfazl H, Alimorad R, et al. Preparation and mechanical properties of graphene oxide: cement nanocomposites. Sci World. 2014;2014:1–10. doi: 10.1155/2014/276323
  • Han B, Zheng Q, Sun S, et al. Enhancing mechanisms of multi-layer graphenes to cementitious composites. Composites Part A. 2017;101:143–150. doi:10.1016/j.compositesa.2017.06.016
  • ASTM C 144-02. Standard specification for aggregate for masonry mortar. 2002.
  • ASTM C 494/C 494M-99a. Standard specification for chemical admixtures for concrete. 1999.
  • INSO 2930-1. Admixtures for concrete, mortar and grout–part 1: common requirements. 2014.
  • ASTM C109/C109M-13. Standard test method for compressive strength of hydraulic cement mortars (using 2-in. Or [50-mm] cube specimens). 2013.
  • INSO 755-2. Terrazzo tiles- part 2: for external uses specifications and test methods. 2014.
  • ASTM C307-03. Standard test method for tensile strength of chemical-resistant mortar, grouts, and monolithic surfacing. 2003.
  • Rong Z, Sun W, Xiao H, et al. Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites. Cem Conc Comp. 2015;56:25–31. doi: 10.1016/j.cemconcomp.2014.11.001
  • Du S, Tang Z, Zhong J, et al. Effect of admixing graphene oxide on abrasion resistance of ordinary Portland cement concrete. AIP Adv. 2019;9(10):105110. doi: 10.1063/1.5124388
  • Li H, Zhang M, Ou J. Abrasion resistance of concrete containing nano-particles for pavement. Wear. 2006;260(11–12):1262–1266. doi: 10.1016/j.wear.2005.08.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.