142
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Efficacy analysis of BaZrS3-based perovskite solar cells: investigated through a numerical simulation

, , , , &
Accepted 10 Jan 2024, Published online: 30 Jan 2024

References

  • Cherif FE, Sammouda H. Optoelectronic simulation and optimization of tandem and multi-junction perovskite solar cells using concentrating photovoltaic systems. Energy Rep. 2021 nov;7:5895–5908. doi: 10.1016/j.egyr.2021.09.014
  • Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009 may;131(17):6050–6051. doi: 10.1021/ja809598r
  • Frolova LA, Davlethanov AI, Dremova NN, et al. Efficient and stable MAPbI 3-based perovskite solar cells using polyvinylcarbazole passivation. J Phys Chem Lett. 2020 aug;11(16):6772–6778.
  • Kumar V, Barbé J, Schmidt WL, et al. Stoichiometry-dependent local instability in MAPbI3 perovskite materials and devices. J Mater Chem A. 2018 nov;6(46):23578–23586.
  • Buffiere M, Dhawale DS, El-Mellouhi F. Chalcogenide materials and derivatives for photovoltaic applications. Energy Technol. 2019 nov;7(11):1900819. doi: 10.1002/ente.201900819
  • Comparotto C, Davydova A, Ericson T, et al. Chalcogenide perovskite BaZrS3: thin film growth by sputtering and rapid thermal processing. ACS Appl Energy Mater. 2020 Mar;3(3):2762–2770.
  • Niu S, Milam-Guerrero J, Zhou Y, et al. Thermal stability study of transition metal perovskite sulfides. J Mater Res. 2018 Dec;33(24):4135–4143.
  • Shaili H, Beraich M, El Hat A. Synthesis of the Sn-based CaSnS3 chalcogenide perovskite thin film as a highly stable photoabsorber for optoelectronic applications. J Alloys Compd. 2021;851:9. doi: 10.1016/j.jallcom.2020.156790
  • Perera S, Hui H, Zhao C, et al. Chalcogenide perovskites – an emerging class of ionic semiconductors. Nano Energy. 2016 april;22:129–135.
  • Kuhar K, Crovetto A, Pandey M, et al. Sulfide perovskites for solar energy conversion applications: computational screening and synthesis of the selected compound LaYS3. Energy Environ Sci. 2017;10(12):2579–2593. doi: 10.1039/C7EE02702H
  • Swarnkar A, Mir WJ, Chakraborty R, et al. Are chalcogenide perovskites an emerging class of semiconductors for optoelectronic properties and solar cell? Chem Mater. 2019 feb;31(3):565–575. doi: 10.1021/acs.chemmater.8b04178
  • Zitouni H, Tahiri N, El Bounagui O, et al. Electronic, optical and transport properties of perovskite BaZrS3 compound doped with Se for photovoltaic applications. Chem Phys. 2020 oct;538:110923. doi: 10.1016/j.chemphys.2020.110923
  • Wei X, Hui H, Perera S, et al. Ti-alloying of BaZrS3 chalcogenide perovskite for photovoltaics. ACS Omega. 2020 aug;5(30):18579–18583.
  • Karthick S, Velumani S, Bouclé J. Chalcogenide BaZrS3 perovskite solar cells: a numerical simulation and analysis using SCAPS-1D. Opt Mater. 2022 april;126:112250. doi: 10.1016/j.optmat.2022.112250
  • Osei-Agyemang E, Koratkar N, Balasubramanian G. Examining the electron transport in chalcogenide perovskite BaZrS3. J Mater Chem C. 2021;9(11):3892–3900. doi: 10.1039/D1TC00374G
  • Bennett JW, Grinberg I, Rappe AM. Effect of substituting of S for O: the sulfide perovskite BaZrS3 investigated with density functional theory. Phys Rev B. 2009 june;79(23):235115. doi: 10.1103/PhysRevB.79.235115
  • Benseddik N, Belkacemi B, Boukabrine F, et al. Numerical study of AgInTe2 solar cells using SCAPS. Adv Mater Process Technol. 2022 jan;8(1):774–782.
  • Abdul Ameer HR, Jarad AN, Salem KH, et al. A role of back contact and temperature on the parameters of CdTe solar cell. Adv Mater Process Technol. 2023 jan:1–9. doi: 10.1080/2374068X.2023.2168264
  • Al-Hattab M, Oublal E, Sahal M, et al. Simulation study of the novel Ag2MgSn(S/Se)4 chalcogenide tandem solar device employing monolithically integrated (2T) configurations. Solar Energy. 2022 dec;248:221–229. doi: 10.1016/j.solener.2022.11.024
  • Bajjou O, Al-Hattab M, Najim A, et al., Modeling and simulation of a solar cell based on CIGS/CdS/ZnO, in 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), Meknes, Morocco: IEEE, mar 2022, p. 1–5. doi: 10.1109/IRASET52964.2022.9737875.
  • Raoui Y, Ez-Zahraouy H, Tahiri N, et al. Performance analysis of MAPbI3 based perovskite solar cells employing diverse charge selective contacts: simulation study. Solar Energy. 2019 nov;193:948–955. doi: 10.1016/j.solener.2019.10.009
  • Raoui Y, Ez-Zahraouy H, Kazim S, et al., Energy Level Engineering of Charge Selective Contact and Halide Perovskite by Modulating Band Offset: Mechanistic Insights, preprint, may 2020. doi: 10.26434/chemrxiv.12367505.v1.
  • Helander MG, Greiner MT, Wang ZB, et al. Work function of fluorine doped tin oxide. J Vac Sci Technol A: Vac Surf Films. 2011 jan;29(1):011019. doi: 10.1116/1.3525641
  • Chakraborty K, Choudhury MG, Paul S. Numerical study of Cs2TiX6 (X = Br−, I−, F− and Cl−) based perovskite solar cell using SCAPS-1D device simulation. Solar Energy. 2019 dec;194:886–892. doi: 10.1016/j.solener.2019.11.005
  • Mandadapu U, Vedanayakam SV, Thyagarajan K. Simulation and analysis of lead based Perovskite solar cell using SCAPS-1D. Indian J Sci Technol. 2017 mar;10(1):1–8. doi: 10.17485/ijst/2017/v11i10/110721
  • Al-Hattab M, Moudou L, Khenfouch M, et al. Numerical simulation of a new heterostructure CIGS/GaSe solar cell system using SCAPS-1D software. Solar Energy. 2021 oct;227:13–22. doi: 10.1016/j.solener.2021.08.084
  • Roy P, Raoui Y, Khare A. Design and simulation of efficient tin based perovskite solar cells through optimization of selective layers: theoretical insights. Opt Mater. 2022 mar;125:112057. doi: 10.1016/j.optmat.2022.112057
  • Fantacci S, De Angelis F, Nazeeruddin MK, et al. Electronic and optical properties of the Spiro-MeOTAD hole conductor in its neutral and oxidized forms: a DFT/TDDFT investigation. J Phys Chem C. 2011 nov;115(46):23126–23133. doi: 10.1021/jp207968b
  • Rahman MS, Miah S, Marma MSW, et al. Simulation based investigation of inverted planar perovskite solar cell with all metal oxide inorganic transport layers, in 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’sBazar, Bangladesh: IEEE, fev. 2019, p. 1–6. doi: 10.1109/ECACE.2019.8679283.
  • Abdelaziz S, Zekry A, Shaker A, et al. Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation. Opt Mater. 2020 Mar;101:109738. doi: 10.1016/j.optmat.2020.109738
  • Tan K, Lin P, Wang G, et al. Controllable design of solid-state perovskite solar cells by SCAPS device simulation. Solid-State Electron. 2016 Dec;126:75–80. doi: 10.1016/j.sse.2016.09.012
  • Roy P, Kumar Sinha N, Khare A. An investigation on the impact of temperature variation over the performance of tin-based perovskite solar cell: a numerical simulation approach. Mater Today Proc. 2021;39:2022–2026. doi: 10.1016/j.matpr.2020.09.281
  • Nishigaki Y, Nagai T, Nishiwaki M, et al. Extraordinary strong band‐edge absorption in distorted chalcogenide perovskites. Solar RRL. 2020 may;4(5):1900555.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.