39
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of TiCp ceramic reinforcement on Ti6Al4V alloy matrix via spark plasma sintering technique

, &
Accepted 10 Jan 2024, Published online: 22 Jan 2024

References

  • Kamachimudali U, Sridhar TM, Raj B. Corrosion of bio implants. Sadhana. 2003;28(3–4):601–637. doi: 10.1007/BF02706450
  • Hu X, Li F, Shi D, et al. A design of self-generated Ti-al-si gradient coatings on Ti6Al4V alloy based on silicon concentration gradient. J Alloys Compd. 2020;830:154670. doi: 10.1016/j.jallcom.2020.154670
  • Cao X, He W, Liao B, et al. Sand particle erosion resistance of the multilayer gradient TiN/Ti coatings on Ti6Al4V alloy. Surf Coat Technol. 2019;365:214–221. doi: 10.1016/j.surfcoat.2018.08.066
  • Mu XN, Chen PW, Zhang HM, et al. Interface-dependent failure behaviors in graphene nanoflakes reinforced Ti matrix composites. Mater Lett. 2021;289:129422. doi: 10.1016/j.matlet.2021.129422
  • Peillon N, Fruhauf JB, Gourdet S, et al. Effect of TiH2 in the preparation of MMC Ti based with TiC reinforcement. J Alloys Compd. 2015;619:157–164. doi: 10.1016/j.jallcom.2014.09.014
  • Lei M, Zhao HZ, Yang H, et al. Syntheses of metal nitrides, metal carbides and rare-earth metal di-oxymonocarbodiimides from metal oxides and dicyandiamide. J Alloys Compd. 2008;460(1–2):130–137. doi: 10.1016/j.jallcom.2007.05.076
  • Levy RB, Boudart M. Platinum-like behavior of tungsten carbide in surface catalysis. Sci. 1973;181(4099):547–549. doi: 10.1126/science.181.4099.547
  • Rohmer MM, Bénard M, Poblet JM. Structure, reactivity, and growth pathways of metallocarbohedrenes M8C12 and transition metal/carbon clusters and nanocrystals: a challenge to computational chemistry. Chem Rev. 2000;100(2):495–542. doi: 10.1021/cr9803885
  • Liu S, Hu W, Xiang J, et al. Mechanical properties of nanocrystalline TiC-ZrC solid solutions fabricated by spark plasma sintering. Ceram Int. 2014;40(7):10517–10522. doi: 10.1016/j.ceramint.2014.03.024
  • Azizian-Kalandaragh Y, Namini AS, Ahmadi Z, et al. Reinforcing effects of SiC whiskers and carbon nanoparticles in spark plasma sintered ZrB2 matrix composites. Ceram Int. 2018;44(16):19932–19938. doi: 10.1016/j.ceramint.2018.07.258
  • Obadele BA, Ige OO, Olubambi PA. Fabrication and characterization of titanium-nickel-zirconia matrix composites prepared by spark plasma sintering. J Alloys Compd. 2017;710:825–830. doi: 10.1016/j.jallcom.2017.03.340
  • Hulbert DM, Anders A, Andersson J, et al. A discussion on the absence of plasma in spark plasma sintering. Scripta Mater. 2009;60(10):835–838. doi: 10.1016/j.scriptamat.2008.12.059
  • Matsushita JI, Suzuki T, Sano A. TiB2焼結体の?温強度. J Ceram Soc Japan. 1993;101(1177):1074–1077. doi: 10.2109/jcersj.101.1074
  • Zhang W, Liu H, Ding H, et al. Superplastic deformation mechanism of the friction stir processed fully lamellar Ti6Al4V alloy. Mater Sci Eng A. 2020;785:139390. doi: 10.1016/j.msea.2020.139390
  • Rogachev SO, Sundeev RV, Nikulin SA. Effect of severe plastic deformation by high-pressure torsion at different temperatures and subsequent annealing on structural and phase transformations in Zr-2.5% Nb alloy. J Alloys Compd. 2021;865:158874. doi: 10.1016/j.jallcom.2021.158874
  • Xinghong Z, Chuncheng Z, Wei Q, et al. Self-propagating high temperature combustion synthesis of TiC/TiB2 ceramic-matrix composites. Compos Sci Technol. 2002;62(15):2037–2041. doi: 10.1016/S0266-3538(02)00155-0
  • Yang YF, Jiang QC. Effect of TiB2/TiC ratio on the microstructure and mechanical properties of high volume fractions of TiB2/TiC reinforced Fe matrix composite. Int J Refract Metals Hard Mater. 2013;38:137–139. doi: 10.1016/j.ijrmhm.2012.12.004
  • Liu LZ, Ying GB, Zhu J, et al. High-temperature compressive properties of TiC-TiB2/Cu composites prepared by self-propagating high-temperature synthesis. Rare Met. 2014;33(1):95–98. doi: 10.1007/s12598-013-0077-2
  • Wei WH, Shao ZN, Shen J, et al. Microstructure and mechanical properties of in situ formed TiC-reinforced Ti6Al4V matrix composites. Mater Sci Technol. 2018;34(2):191–198. doi: 10.1080/02670836.2017.1366737
  • Wei ZJ, Cao L, Wang HW, et al. Microstructure and mechanical properties of TiC/Ti6Al4V composites processed by in situ casting route. Mater Sci Technol. 2011;27(8):1321–1327. doi: 10.1179/026708310X12699498462922
  • Singh N, Ummethala R, Karamched PS, et al. Spark plasma sintering of Ti6Al4V metal matrix composites: microstructure, mechanical and corrosion properties. J Alloys Compd. 2021;865:158875. doi: 10.1016/j.jallcom.2021.158875
  • Hao Y, Liu J, Li J, et al. Rapid preparation of TiC reinforced Ti6Al4V based composites by carburizing method through spark plasma sintering technique. Mat Des (1980-2015). 2015;65:94–97. doi: 10.1016/j.matdes.2014.09.008
  • Nagase T, Hori T, Todai M, et al. Additive manufacturing of dense components in betatitanium alloys with crystallographic texture from a mixture of pure metallic element powders. Mater Design. 2019;173:107771. doi: 10.1016/j.matdes.2019.107771
  • Bakan HI, Korkmaz K. Synthesis and properties of metal matrix composite foams based on austenitic stainless steels-titanium carbonitrides. Mater Design. 2015;83:154–158. doi: 10.1016/j.matdes.2015.06.016
  • Seifert M, Goncalves P, Justus T, et al. A novel approach to develop composite ceramics based on active filler loaded precursor employing plasma assisted pyrolysis. Mater Design. 2016;89:893–900. doi: 10.1016/j.matdes.2015.10.057
  • Da Silva LLG, Ueda M, Silva MM, et al. Corrosion behavior of Ti6Al4V alloy treated by plasma immersion ion implantation process. Surf Coat Technol. 2007;201(19–20):8136–8139. doi: 10.1016/j.surfcoat.2006.03.054
  • Nalla RK, Altenberger I, Noster U, et al. On the influence of mechanical surface treatments-deep rolling and laser shock peening-on the fatigue behavior of Ti6Al4V at ambient and elevated temperatures. Mater Sci Eng A. 2003;355(1–2):216–230. doi: 10.1016/S0921-5093(03)00069-8
  • Fan Y, Tian W, Guo Y, et al. Relationships among the microstructure, mechanical properties, and fatigue behavior in thin Ti6Al4V. Adv Mater Sci Eng. 2016;2016:1–9. doi: 10.1155/2016/7278267
  • Banerjee D, Williams JC. Perspectives on titanium science and technology. Acta Mater. 2013;61(3):844–879. doi: 10.1016/j.actamat.2012.10.043
  • Amigó V, Salvador MD, Romero F, et al. Microstructural evolution of Ti6Al4V during the sintering of microspheres of Ti for orthopedic implants. J Mater Process Technol. 2003;141(1):117–122. doi: 10.1016/S0924-0136(03)00243-7
  • Obadele BA, Andrews A, Mathew MT, et al. Improving the tribocorrosion resistance of Ti6Al4V surface by laser surface cladding with TiNiZrO2 composite coating. Appl Surface Sci. 2015;345:99–108. doi: 10.1016/j.apsusc.2015.03.152
  • Leyland A, Matthews A. On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear. 2000;246(1–2):1–11. doi: 10.1016/S0043-1648(00)00488-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.