109
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The influence of hatch distance on the surface roughness, microhardness, residual stress, and density of inconel 625 specimens in the laser powder bed fusion process

, &
Accepted 10 Jan 2024, Published online: 03 Feb 2024

References

  • Keles O, Abdelmagid G, Adesina A, et al. Additive manufacturing of layer of Ti6Al4V alloy: morphology and metallurgical properties. Adv Mater Process Technol. 2020;8(1):875–883. doi: 10.1080/2374068X.2020.1835009
  • Melzer D, Džugan J, Koukolíková M, et al. Fracture characterisation of vertically build functionally graded 316L stainless steel with inconel 718 deposited by directed energy deposition process. Virtual Phys Prototyping. 2022;17(4):821–840. doi: 10.1080/17452759.2022.2073793
  • Novotný L, Béreš M, de Abreu HFG, et al. Thermal analysis and phase transformation behaviour during additive manufacturing of Ti–6Al–4V alloy. Mater Sci Technol. 2019;35(7):846–855. doi: 10.1080/02670836.2019.1593669
  • Kumar D, Kumar A, Faisal N, et al. Application of 3D printing technology for medical implants: a state-of-the-art review. Adv Mater Process Technol. 2023;1–16. doi: 10.1080/2374068X.2023.2193788
  • Marchese G, Lorusso M, Parizia S, et al. Influence of heat treatments on microstructure evolution and mechanical properties of inconel 625 processed by laser powder bed fusion. Mater Sci Eng A. 2018;729:64–75. doi: 10.1016/j.msea.2018.05.044
  • ISO/ASTM. 52900. ‘Additive manufacturing – general principles – terminology’, 52900:2015(E). Philadelphia, PA, USA: ASTM; 2015.
  • Pandey A, Awasthi A, Saxena KK. Metallic implants with properties and latest production techniques: a review. Adv Mater Process Technol. 2020;6(2):405–440. doi: 10.1080/2374068X.2020.1731236
  • Islam M, Purtonen T, Piili H, et al. Temperature profile and imaging analysis of laser additive manufacturing of stainless steel. Phys Procedia. 2013;41:835–842. doi: 10.1016/j.phpro.2013.03.156
  • Nagarajan B, Hu Z, Song X, et al. Development of micro selective laser melting: the state of the art and future perspectives. Eng. 2019;5:702–720. doi: 10.1016/j.eng.2019.07.002
  • Paul CP, Ganesh P, Mishra SK, et al. Investigating laser rapid manufacturing for inconel-625 components. Opt Laser Technol. 2007;39(4):800–805. doi: 10.1016/j.optlastec.2006.01.008
  • Ezugwu E, Wang Z, Machado A. The machinability of nickel-based alloys: a review. J Mater Process Technol. 1999;86(1–3):1–16. doi: 10.1016/S0924-0136(98)00314-8
  • Nath C, Brooks Z, Kurfess TR. On machinability study and process optimization in face milling of some alloys with indexable copy face mill inserts. Procedia Manuf. 2015;1:487–500. doi: 10.1016/j.promfg.2015.09.008
  • Mumtaz K, Hopkinson N. Top surface and side roughness of inconel 625 parts processed using selective laser melting. Rapid Prototyping J. 2009;15(2):96–103. doi: 10.1108/13552540910943397
  • Kruth J-P, Deckers J, Yasa E, et al. Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method. Proc Inst Mech Eng Part B J Eng Manuf. 2012;226(6):980–991. doi: 10.1177/0954405412437085
  • Wu A, Brown D, Kumar M, et al. An experimental investigation into additive manufacturing-induced residual stresses in 316l stainless steel. Metall Mater Trans A. 2014;45(13):6260–6270. doi: 10.1007/s11661-014-2549-x
  • Sateesh NH, Kumar GCM, Prasad K, et al. Microstructure and mechanical characterization of laser sintered inconel-625 superalloy, Procedia Mater. Sci. 2014;5:772–779. doi: 10.1016/j.mspro.2014.07.327
  • Lu Y, Wu S, Gan Y, et al. Study on the microstructure, mechanical property and residual stress of SLM inconel-718 alloy manufactured by differing island scanning strategy. Vol. 75, United Kingdom: Optics & Laser Technology; 2015. p. 197–206 doi: 10.1016/j.optlastec.2015.07.009
  • Yadroitsev I, Yadroitsava I. Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting. Virtual Phys Prototyping. 2015;10(2):67–76. doi: 10.1080/17452759.2015.1026045
  • Carter LN, Wang X, Read N, et al. Process optimisation of selective laser melting using energy density model for nickel based superalloys. Mater Sci Technol. 2016;32:657–661. doi: 10.1179/1743284715Y.0000000108
  • Marchese G, Colera XG, Calignano F, et al. Characterization and comparison of inconel 625 processed by selective laser melting and laser metal deposition. Adv Eng Mater. 2017;19(3):1–9. doi: 10.1002/adem.201600635
  • Balbaa MA, Elbestawi MA, Mclsaac J. An experimental investigation of surface integrity in selective laser melting of inconel 625. Int J Adv Manuf Technol. 2019;104(9–12):3511–3529. doi: 10.1007/s00170-019-03949-y
  • Staub A, Spierings AB, Wegener K. Correlation of meltpool characteristics and residual stresses at high laser intensity for metal lpbf process. Adv Mater Process Technol. 2019;5(1):153–161. doi: 10.1080/2374068X.2018.1535643
  • Yan X, Gao S, Chang C, et al. Effect of building directions on the surface roughness, microstructure, and tribological properties of selective laser melted inconel 625. J Mater Process Technol. 2021;288:116878. doi: 10.1016/j.jmatprotec.2020.116878
  • Zhang J, Li S, Wei Q, et al. Cracking behavior and inhibiting process of inconel 625 alloy formed by selective laser melting. Chin J Rare Met. 2015;39:961–966. doi: 10.13373/j.cnki.cjrm.2015.11.001
  • Sochalski-Kolbus LM, Payzant EA, Cornwell PA, et al. Comparison of residual stresses in inconel 718 simple parts made by electron beam melting and direct laser metal sintering. Metall Mater Trans A. 2015;46(3):1419–1432. doi: 10.1007/s11661-014-2722-2
  • Pleass C, Jothi S. Influence of powder characteristics and additive manufacturing process parameters on the microstructure and mechanical behaviour of inconel 625 fabricated by selective laser melting. Addit Manuf. 2018;24:419–431. doi: 10.1016/j.addma.2018.09.023
  • Spierings A, Schneider M, Eggenberger R. Comparison of density measurement techniques for additive manufactured metallic parts. Rapid Prototyping J. 2011;17(5):380–386. doi: 10.1108/13552541111156504
  • Koutiri I, Pessard E, Peyre P, et al. Influence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built inconel 625 parts J. Mater Process Technol. 2018;255:536–546. doi: 10.1016/j.jmatprotec.2017.12.043
  • Zhang B, Bi G, Nai S, et al. Microhardness and microstructure evolution of TiB2 reinforced inconel 625/TiB2 composite produced by selective laser melting. Opt Laser Technol. 2016;80:186–195. doi: 10.1016/j.optlastec.2016.01.010
  • Liu FC, Lin X, Yang GL, et al. Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy. Opt Laser Technol. 2011;43(1):208–213. doi: 10.1016/j.optlastec.2010.06.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.