92
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multi-response optimisation during face milling of polyoxymethylene copolymer using grey relational analysis and data envelopment analysis based ranking coupled with the Taguchi approach

ORCID Icon, , &
Accepted 29 Jan 2024, Published online: 10 Feb 2024

References

  • Ghori SW, Siakeng R, Rasheed M, et al. The role of advanced polymer materials in aerospace. Sustain Compos Aerosp Appl. 2018;1:19–34.
  • Keresztes R, Kalácska G, Zsidai L, et al. Machinability of engineering polymers. IJSMED. 2011;2(1):106–114. doi: 10.21825/scad.v2i1.20467
  • Dobrocky D, Sedlak J, Joska Z, et al. Influence of machining parameters on the surface quality of technical plastics. ECS Trans. 2021;105(1):381. doi: 10.1149/10501.0381ecst
  • Palanikumar K, Karunamoorthy L, Karthikeyan R. Assessment of factors influencing surface roughness on the machining of glass fiber-reinforced polymer composites. Mater Des. 2006;27(10):862–871. doi: 10.1016/j.matdes.2005.03.011
  • Jagtap TU, Mandave HA. Machining of plastics: a review. Int J Eng Res Gen Sci. 2015;3:577–581.
  • Alarifi IM. A review on factors affecting machinability and properties of fiber-reinforced polymer composites. J Nat Fibers. 2023;20(1):2154304. doi: 10.1080/15440478.2022.2154304
  • Chabbi A, Yallese MA, Meddour I, et al. Predictive modeling and multi-response optimization of technological parameters in turning of polyoxymethylene polymer (POM C) using RSM and desirability function. Meas J Int Meas Confed. 2017;95:99–115. doi: 10.1016/j.measurement.2016.09.043
  • Arifin N, Yusoff H, Sudin I, et al. Study the effect of CNC milling parameter on surface roughness of POM material. ARPN J Eng Appl Sci. 2016;11:6611–6614.
  • Campos Rubio JC, Panzera TH, Scarpa F. Machining behaviour of three high-performance engineering plastics. Proc Inst Mech Eng Part B J Eng Manuf. 2015;229(1):28–37. doi: 10.1177/0954405414525142
  • Panc N, Contiu G, Bocanet V. Comparative analysis of surface finishing for different cutting strategies of parts made from POM C BT – Advances in manufacturing engineering and materials. Hloch S, Klichová D, Krolczyk GM, Chattopadhyaya S, Ruppenthalová L, eds. Cham: Springer International Publishing; 2019. pp. 324–332.
  • Chabbi A, Yallese MA, Nouioua M, et al. Modeling and optimization of turning process parameters during the cutting of polymer (POM C) based on RSM, ANN, and DF methods. Int J Adv Manuf Technol. 2017;91(5–8):2267–2290. doi: 10.1007/s00170-016-9858-8
  • Aruna M. Optimization of cutting parameters in machining polyoxymethylene using RSM. IOP Conf Ser Mater Sci Eng. 2020;893(1):12005. doi: 10.1088/1757-899X/893/1/012005
  • Trifunovic M, Madić M, Janković P, et al. Investigation of cutting and specific cutting energy in turning of POM-C using a PCD tool: analysis and some optimization aspects. J Clean Prod. 2021;303:127043. doi: 10.1016/j.jclepro.2021.127043
  • Lazarević D, Madić M, Janković P, et al. Surface roughness minimization of polyamide PA-6 turning by Taguchi method. J Prod Eng. 2012;15:29.
  • Belhadi S, Kaddeche M, Chaoui K, et al. Machining optimization of HDPE pipe using the Taguchi method and grey relational analysis. Int Polym Process. 2016;31(4):491–502. doi: 10.3139/217.3271
  • Unnikrishna Pillai J, Sanghrajka I, Shunmugavel M, et al. Optimisation of multiple response characteristics on end milling of aluminium alloy using Taguchi-Grey relational approach. Meas J Int Meas Confed. 2018;124:291–298. doi: 10.1016/j.measurement.2018.04.052
  • Altan Özbek N, Özbek O, Kara F, et al. Effect of eco-friendly minimum quantity lubrication in hard machining of vanadis 10: a high strength steel. Steel Res Int. 2022;93:2100587. doi: 10.1002/srin.202100587
  • Koklu U. Optimization of kerf and surface roughness of al 7 475-t7 351 alloy machined with wedm process using the grey-based Taguchi method. Metal -Sisak Then Zagreb. 2012;51:47–50.
  • Kurt M, Köklü U. Minimization of the shape error in the interrupted grinding process by using Taguchi method. Mechanika. 2012;18(6):677–682. doi: 10.5755/j01.mech.18.6.3163
  • Köklü U, Mayda M, Morkavuk S, et al. Optimization and prediction of thrust force, vibration and delamination in drilling of functionally graded composite using Taguchi, ANOVA and ANN analysis. Mater Res Express. 2019;6(8):85335. doi: 10.1088/2053-1591/ab2617
  • Sultana N, Dhar NR. Hybrid GRA-PCA and modified weighted TOPSIS coupled with Taguchi for multi-response process parameter optimization in turning AISI 1040 steel. Arch Mech Eng. 2021;68:23–49. doi: 10.24425/ame.2020.131707
  • Manjunath Patel GC, Jagadish Kumar RS, Naidu NVS. Optimization of abrasive water jet machining for green composites using multi-variant hybrid techniques. J Manuf Process. 2020;1:129–162. doi: 10.1007/978-3-030-19638-7_6
  • Kharwar PK, Verma RK, Mandal NK, et al. Swarm intelligence integrated approach for experimental investigation in milling of multiwall carbon nanotube/polymer nanocomposites. Arch Mech Eng. 2020;67:353–376. doi: 10.24425/ame.2020.131698
  • Yaser EKM, Shunmugesh K. Multi-objective optimization of milling process parameters in glass fibre reinforced polymer via grey relational analysis and desirability function. Mater Today Proc. 2019;11:1015–1023. doi: 10.1016/j.matpr.2018.12.032
  • Haoues S, Yallese MA, Belhadi S, et al. Optimisation Mono Et Multi-Objectif De L’Usinage Du Polyamide (Pa66-Gf30%) En Utilisant La Methode Taguchi-Dear Basee Sur Le Rapport Signal/Bruit. UPB Sci Bull Ser D Mech Eng. 2022;84:107–118.
  • Alateyah AI, El-Taybany Y, El-Sanabary S, et al. Experimental investigation and optimization of turning polymers using RSM, GA, hybrid FFD-GA, and MOGA methods. Polymers. 2022;14(17):14. doi: 10.3390/polym14173585
  • Robert K, Korzenszky P, Keresztes R. Research on the turning of technical polymers. UPB Sci. Bull. 2021;35:49–53.
  • Azzi A, Boulanouar L, Laouisi A, et al. Modeling and optimization of machining parameters to minimize surface roughness and maximize productivity when turning polytetrafluoroethylene (PTFE). Int J Adv Manuf Technol. 2022;123(1–2):407–430. doi: 10.1007/s00170-022-10160-z
  • Tabacaru V. Artificial neural networks applied to prediction of surface roughness in dry drilling of some polymers. IOP Conf Ser Mater Sci Eng. 2020;916(1):12117. doi: 10.1088/1757-899X/916/1/012117
  • Kumar K, Verma RK. Combined compromise solution for machining performance optimization of modified polymer composite. Adv Form Mach Autom. Dixit US, Kanthababu M, Ramesh Babu A, Udhayakumar S, editors. 2023;1:197–206.
  • Kesarwani S, Verma RK. Ant lion optimizer (ALO) algorithm for machinability assessment during milling of polymer composites modified by zero-dimensional carbon nano onions (0D-CNOs). Measurement. 2022;187:110282. doi: 10.1016/j.measurement.2021.110282
  • Haoues S, Yallese MA, Belhadi S, et al. Modeling and optimization in turning of PA66-GF30% and PA66 using multi-criteria decision-making (PSI, MABAC, and MAIRCA) methods: a comparative study. Int J Adv Manuf Technol. 2023;124(7–8):2401–2421. doi: 10.1007/s00170-022-10583-8
  • Sarankó Á, Kalácska G, Keresztes RZ. Analysis of formed chips in the case of turning different polymer materials. Hung J Ind Chem. 2021;49(2):71–75. doi: 10.33927/hjic-2021-25
  • Kumar J, Verma RK. Delamination assessment during machining of laminated polymer nanocomposite. IJMMT. 2021;13(2):109–115. doi: 10.54684/ijmmt.2021.13.2.109
  • Kumar J, Verma RK, Mondal AK, et al. A hybrid optimization technique to control the machining performance of graphene/carbon/polymer (epoxy) nanocomposites. Polym Polym Compos. 2021;29(9_suppl):S1168–S1180. doi: 10.1177/09673911211046789
  • Natarajan E, Kaviarasan V, Lim WH, et al. Non-dominated sorting modified teaching–learning-based optimization for multi-objective machining of polytetrafluoroethylene (PTFE). J Intell Manuf. 2020;31(4):911–935. doi: 10.1007/s10845-019-01486-9
  • Fnides M, Yallese MA, Khattabi R, et al. Modeling and optimization of surface roughness and productivity thru RSM in face milling of AISI 1040 steel using coated carbide inserts. Int J Ind Eng Comput. 2017;8:493–512. doi: 10.5267/j.ijiec.2017.3.001
  • Selaimia AA, Yallese MA, Bensouilah H, et al. Modeling and optimization in dry face milling of X2CrNi18-9 austenitic stainless steel using RMS and desirability approach. Meas J Int Meas Confed. 2017;107:53–67. doi: 10.1016/j.measurement.2017.05.012
  • Chomsamutr K, Jongprasithporn S. Optimization parameters of tool life model using the Taguchi approach and response surface methodology. Int J Comput Sci Issues. 2012;9:120–125.
  • Kowalczyk M. Application of Taguchi and Anova Methods in selection of process parameters for surface roughness in precision turning of titanium. Adv Manuf Sci Technol. 2014;38(2):21–35. doi: 10.2478/amst-2014-0008
  • Masmiati N, Sarhan AAD. Optimizing cutting parameters in inclined end milling for minimum surface residual stress – Taguchi approach. Meas J Int Meas Confed. 2015;60:267–275. doi: 10.1016/j.measurement.2014.10.002
  • Wojciechowski S, Marudar W, Krolczyk M, et al. Application of signal to noise ratio and grey relational analysis to minimize forces and vibrations during precise ball end milling. Precis Eng. 2018;51:582–596. doi: 10.1016/j.precisioneng.2017.10.014
  • Zerti O, Yallese MA, Zerti A, et al. Simultaneous improvement of surface quality and productivity using grey relational analysis based Taguchi design for turning couple (AISI D3 steel/mixed ceramic tool (Al2O3 + TiC)). Int J Ind Eng Comput. 2018;9:173–194. doi: 10.5267/j.ijiec.2017.7.001
  • Kibria G, Doloi B, Bhattacharyya B. Experimental investigation and multi-objective optimization of Nd: YAG laser micro-turning process of alumina ceramic using orthogonal array and grey relational analysis. Opt Laser Technol. 2013;48:16–27. doi: 10.1016/j.optlastec.2012.09.036
  • Palanisamy D, Senthil P. Optimization on turning parameters of 15-5PH stainless steel using Taguchi based grey approach and Topsis. Arch Mech Eng. 2016;63(3):397–412. doi: 10.1515/meceng-2016-0023
  • Charnes A, Cooper WW, Rhodes E. Measuring the efficiency of decision making units. Eur J Oper Res. 1978;2(6):429–444. doi: 10.1016/0377-2217(78)90138-8
  • Hong SN, Vo Thi Nhu U. Multi-objective optimization in turning operation of AISI 1055 steel using DEAR method. Tribol Ind. 2021;43(1): 57–65. doi: 10.24874/ti.1006.11.20.01
  • Moganapriya C, Rajasekar R, Mohanraj T, et al. Dry machining performance studies on TiAlSiN coated inserts in turning of AISI 420 martensitic stainless steel and multi-criteria decision making using Taguchi – DEAR approach. Silicon. 2021;14(8):4183–4196. doi: 10.1007/s12633-021-01202-4
  • Chate GR, MP GC, H HM, et al. Sustainable machining: modelling and optimization using Taguchi, MOORA and DEAR methods. Mater Today Proc. 2021;46:8941–8947. doi: 10.1016/j.matpr.2021.05.365
  • Izamshah R, Azam MA, Hadzley M, et al. Study of surface roughness on milling unfilled-polyetheretherketones engineering plastics. Procedia Eng. 2013;68:654–660. doi: 10.1016/j.proeng.2013.12.235
  • Kharwar PK, Verma RK. Nature instigated Grey wolf algorithm for parametric optimization during machining (milling) of polymer nanocomposites. J Thermoplast Compos Mater. 2021;36(1):118–140. doi: 10.1177/0892705721993202
  • Chelladurai SJS, M K, Ray AP, et al. Optimization of process parameters using response surface methodology: a review. Mater Today Proc. 2021; 37:1301–1304.
  • Bouziane A, Boulanouar L, Azizi MW, et al. Analysis of cutting forces and roughness during hard turning of bearing steel. Struct Eng Mech. 2018;66:285–294.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.