47
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Structural, microstructural, dielectric, electrical, and magnetic properties of a scandium-modified bismuth ferrite

, ORCID Icon &
Accepted 06 Apr 2024, Published online: 22 Apr 2024

References

  • Bose TM, Bysakh A, Sen S, et al. Influence of plasma pressure on the growth characteristics and ferroelectric properties of sputter-deposited PZT thin films. Appl Surf Sci. 2010;256(21):6205–6212. doi: 10.1016/j.apsusc.2010.03.142
  • Damjanovic D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys. 1998;61(9):1267–1324. doi: 10.1088/0034-4885/61/9/002
  • Chilibon I, Dias C, Inacio P, et al. Pztand PVDF bimorph actuators. J Optoelectron Adv Mater. 2007;9:1939–1943.
  • Fan H, Park GT, Choi JJ, et al. Preparation and characterization of sol-gel-derived lead magnesium niobium titanate thin films with pure perovskite phase lead oxide overcoat. J Am Ceram Soc. 2002;85(8):2001–2004. doi: 10.1111/j.1151-2916.2002.tb00395.x
  • Scott JF. Ferroelectric memories, springer series in advanced microelectronics. Berlin: Springer; 2000.
  • Sumara G. The relaxational properties of compositionally disordered ABO 3 perovskites. J Phys Conds Matter. 2003;15(9):R367–R411. doi: 10.1088/0953-8984/15/9/202
  • Cross LE. Relaxor ferroelectrics: an overview. Ferroelectrics. 1994;151(1):305–320. doi: 10.1080/00150199408244755
  • Cox PA. Transition Metal Oxides: an introduction to their electronic structure and properties. New York, NY: Clarendon Press; 2010.
  • Kleemann W, Dec J, Lehnen P, et al. Uniaxial relaxor ferroelectrics: The ferroic random-field Ising model materialized at last. Europhys Lett. 2002;57(1):14–19. doi: 10.1209/epl/i2002-00534-y
  • Granzow T, Woike T, Wöhlecke M. Change from 3D-Isingtorando mfield-Ising model criticality in a uniaxial relaxor ferroelectric. Phys Rev Lett. 2004;92(6):065701. doi: 10.1103/PhysRevLett.92.065701
  • Pirc R, Blinc R. Spherical random-bond–random-field model of relaxor ferroelectrics. Phys Rev B. 1999;60(19):13470–13478. doi: 10.1103/PhysRevB.60.13470
  • Bobnar V, Kutnjak Z, Pirc R, et al. Crossover from glassy to inhomogeneous-ferroelectric nonlinear dielectric response in relaxor ferroelectrics. Phys Rev Lett. 2000;84(25):5892–5895. doi: 10.1103/PhysRevLett.84.5892
  • Cross LE. Relaxor ferroelectrics. Ferroelectrics. 1987;76(1):241–267. doi: 10.1080/00150198708016945
  • Lone BG, Under PB, Patil SS, et al. Dielectric study of methanol–ethanol mixtures using TDR method. J Mol Liq. 2008;141(1–2):47–53. doi: 10.1016/j.molliq.2008.03.001
  • Viehland D, Jang SJ, Cross LE, et al. Deviation from Curie-Weiss behavior in relaxor ferroelectrics. Phys Rev B. 1992;46(13):8003–8006. doi: 10.1103/PhysRevB.46.8003
  • Colla VE, Koroleva EY, Okuneva NM, et al. Long-time relaxation of the dielectric response in lead magnoniobate. Phys Rev Lett. 1995;74(9):1681–1684. doi: 10.1103/PhysRevLett.74.1681
  • Schmidt G, Arndt H, Borchhardt G, et al. Induced phase transitions in ferroelectrics with diffuse phase transition. Phys Status Solid. 1981;63(2):501–510. doi: 10.1002/pssa.2210630216
  • Wang J, Neaton JB, Zhang H. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures. R Sci. 2003;299(5613):1719. doi: 10.1126/science.1080615
  • Yoo J, Yoon K, Lee Y, et al. Electrical characteristics of the contour-vibration-mode piezoelectric transformer with Ring/Dot electrode area ratio. J Appl Phys. 2000;39(5R):2680. doi: 10.1143/JJAP.39.2680
  • Sasaki Y, Yamamoto M, Ochi A, et al. Small multilayer piezoelectric transformers with high power density –characteristics of second and Third-Mode Rosen-Type transformers. J Appl Phys. 1999;38(9S):5598. doi: 10.1143/JJAP.38.5598
  • Grieger D, Fabrizio M. Low-temperature magnetic ordering and structural distortions in vanadium sesquioxide V2O3. Phys Rev B. 2015;92(7):075121–075126. doi: 10.1103/PhysRevB.92.075121
  • Khomchenko VA, Karpinsky DV, Paixão JA. Magnetostructural correlations in BiFeO 3-based multiferroics. J Mater Chem C. 2017;5:3623–3629. doi: 10.1039/C7TC00833C
  • Wang J, Pang X, Akinc M, et al. Synthesis and characterization of perovskite PbTiO3 nanoparticles with solution processability. J Mater Chem. 2010;20(28):5945–5949. doi: 10.1039/c0jm00270d
  • Taylor P, Wójcik K. Electrical properties of PbTiO3 single crystals doped with lanthanum. Ferroelectrics. 2011;99:37–41. doi: 10.1080/00150198908221435
  • Kumar N, Shukla A, Kumar N, et al. Structural, electrical, and multiferroic characteristics of lead-free multiferroic: Bi(Co 0.5 Ti 0.5)O3 –BiFeO 3 solid solution. RSC Adv. 2018;8(64):36939–36950. doi: 10.1039/C8RA02306A
  • Zhu W, Guo H, Ye Z. Structural and magnetic characterization of multiferroic (BiFeO3). Physical Review B. 2008;75:1–10. doi: 10.1103/PhysRevB.78.014401
  • Joshipura ID, Ayers HR, Majidi C, et al. Methods to pattern liquid metals. J Mater Chem C. 2015;3(16):3834–3841. doi: 10.1039/C5TC00330J
  • Khan MA, Comyn TP, Bell AJ. Growth and characterization of tetragonal bismuth ferrite–lead titanate thin films. Acta Materialia. 2008;56:2110–2118. doi: 10.1016/j.actamat.2008.01.008
  • Sahu T, Behera B. Investigation on structural, dielectric and ferroelectric properties of samarium-substituted BiFeO3–PbTiO3 composites. J Adv Dielectr. 2017;7:1750001–6. doi: 10.1142/S2010135X17500011
  • Singh A, Chatterjee R. Multiferroic Properties of La-Rich BiFeO 3 -PbTiO 3 Solid Solutions. Ferroelectrics. 2012;433(1):180–189. doi: 10.1080/00150193.2012.722462
  • Mishra S, Choudhary RNP, Parida SK. Structural, dielectric, electrical and optical properties of Li/Fe modified barium tungstate double perovskite for electronic devices. Ceram Int. 2022;48(12):2022)17020–17033. doi:10.1016/j.ceramint.2022.02.257
  • Fe L, Vo C, Ram M. Effects of temperature and frequency on dielectric properties of LiCo3/5Fe1/5Cu1/5VO4. Int J Sci Res. 2016;4:2254–2257. doi: 10.21275/v4i11.nov151671
  • Kumar A, Singh BP, Choudhary RNP, et al. A.C. Impedance analysis of the effect of dopant concentration on electrical properties of calcium modified BaSnO3. J Alloys Compd. 2005;394(1–2):292–302. doi: 10.1016/j.jallcom.2004.11.012
  • Mishra S, Choudhary RNP, Parida SK. Structural, dielectric, electrical and optical properties of a double perovskite: BaNaFeWO6 for some device applications. J Mol Struct. 2022;1265:133353. doi: 10.1016/j.molstruc.2022.133353
  • Sen S, Choudhary RNP, Pramanik P. Structural and electrical properties of Ca2±modified PZT electroceramics. Phys B Condens Matter. 2007;387(1–2):56–62. doi: 10.1016/j.physb.2006.03.028
  • Parida SK. Structural, electrical and optical properties of Zinc and tungsten modified lead titanate ceramics for photovoltaic applications. SPIN. 2021;11(2):2150018–14. doi: 10.1142/S2010324721500181
  • Macdonald JR. Solid State Ionics 13 (1984) 147-149 North-Holland, Amsterdam note on the parameterization of the constant-phase admittance element. Solid State Ion. 1984;13(2):147–149. doi: 10.1016/0167-2738(84)90049-3
  • Parida SK. Influence of cerium substitution on structural and dielectric properties of the modified BiFeO3-PbTiO3 ceramics. Ferroelectric. 2021;583(1):19–32. doi: 10.1080/00150193.2021.1980341
  • Parida SK, Choudhary RNP, Achary PGR. Structure and ferroelectric properties of lead nickel tungsten titanate: Pb(Ni1/3Ti1/3W1/3)O3 single perovskite. Ferroelectrics. 2019;551:109–121.
  • Sinha SK, Choudhary SN, Choudhary RNP. Studies of the structural, dielectric and electrical behavior of Pb(Mn1/4Co1/4W1/2)O3 ceramics. J Mater Sci. 2004;39:315–318.
  • Vaishnava PP, Senaratne U, Buc EC, et al. Magnetic properties of γ−Fe2O3 nanoparticles incorporated in a polystyrene resin matrix. Phys Rev B. 2007;76(2):024413. doi: 10.1103/PhysRevB.76.024413
  • Peddis D, Mansilla MV, Morup S, et al. Spin-canting and magnetic anisotropy in ultrasmall CoFe2O4 nanoparticles. J Phys Chem B. 2008;112(29):8507. doi: 10.1021/jp8016634
  • Rondinone AJ, Samia ACS, Zhang ZJ. Superparamagnetic relaxation and magnetic anisotropy energy distribution in CoFe2O4 spinel ferrite nanocrystallites. J Phys Chem B. 1999;103(33):6876. doi: 10.1021/jp9912307
  • Zhen G, Muir BW, Moffat BA, et al. Comparative study of the magnetic behavior of spherical and cubic superparamagnetic iron oxide nanoparticles. J Phys Chem C. 2011;115(2):327. doi: 10.1021/jp104953z
  • Modak S, Karan S, Roy SK, et al. Static and dynamic magnetic behavior of nanocrystalline and nanocomposites of (Mn0.6Zn0.4Fe2O4)(1−z)(SiO2)z (z=0.0,0.10,0.15,0.25). J Appl Phys. 2010;108(9):093912. doi: 10.1063/1.3499644

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.