15
Views
0
CrossRef citations to date
0
Altmetric
Research article

Change in deformation mechanism to change TRIP to TWIP strengthening in the class of 304 austenitic stainless steel sheets by trapezoidal wavy-rolling process

Accepted 03 Jun 2024, Published online: 20 Jun 2024

References

  • Beddoes J, Parr JG Introduction to stainless steels. 3rd edition, ASM International, Materials Park (OH) (USA), 1999.
  • Lo KH, Shek CH, Lai JKL Recent developments in stainless steels. Mater Sci EngMater Sci And Eng R. 2009; 65: 39–104. 4–6. doi: 10.1016/j.mser.2009.03.001
  • Pun L, Guilherme CS, Isakov M, et al. Effects of strain rate on strain-induced martensite nucleation and growth in 301LN metastable austenitic steel. Mater Sci And Eng: A. 2022: 831:142218. doi: 10.1016/j.msea.2021.142218
  • Talonen J, Hänninen H. Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels. Acta Mater. 2007;55(18):6108–6118. doi: 10.1016/j.actamat.2007.07.015
  • Mangonon L, Thomas G. The martensite phases in 304 stainless steel. Metall Trans. 1970;1(6):1577–1586. doi: 10.1007/BF02642003
  • Linderov M, Segel C, Weidner A, et al. Deformation mechanisms in austenitic TRIP/TWIP steels at room andelevated temperature investigated by acoustic emission and scanningelectron microscopy. Mater Sci Eng. 2014; 597: 183–193. doi: 10.1016/j.msea.2013.12.094
  • Challa VSA, Misra RDK, Somani MC, et al. Strain hardening behavior of nanograined/ultrafine-grained (NG/UFG) Austenitic16Cr–10Ni stainless steel and its relationship to austenite stability and deformation behavior. Mater Sci Eng. 2016; 649: 153–157. doi: 10.1016/j.msea.2015.09.112
  • Azushima A, Kopp R, Korhonen A, et al. Severe plastic deformation (SPD) processes for metals. CIRP Ann– Manufacturing Technol. 2008;57(2):716–735. doi: 10.1016/j.cirp.2008.09.005
  • Bordone M, Monsalve A, Perez Ipina J Fracture toughness of high-manganese steels with TWIP/TRIP effects. Eng Fract Mech. 2022; 275: 108837. doi: 10.1016/j.engfracmech.2022.108837
  • Shen YF, Li XX, Sun X, et al. Twinning and martensite in a 304 austenitic stainless steel. Mater Sci Eng. 2012; 552: 514–522. doi: 10.1016/j.msea.2012.05.080
  • John SA, Gregory NH Constitutive and transformation kinetics modeling of ε-, α’ -Martensite and mechanical twinning in steels containing austenite. Acta Mater. 2022; 228:117757. doi: 10.1016/j.actamat.2022.117757
  • Jaswon MA, Wheeler JA Atomic displacements in the austenite–martensite transformation. Acta Crystall. 1948; 1:216–224.doi: 10.1107/S0365110X48000582
  • Bowles JS, Mackenzie JK. The crystallography of martensite transformations III. Face-centred cubic to body-centred tetragonal transformations. Acta Metall. 1954;2(2):224–234. doi: 10.1016/0001-6160(54)90163-7
  • Lee S, Shin S, Kwon M, et al. Tensile properties of medium Mn steel with a Bimodal UFG α + γ and Coarse δ-Ferrite microstructure. Metall Mater Trans A. 2017; 48: 1678–1700. doi: 10.1007/s11661-017-3979-z
  • Souza Filho IR, Dutta A, Almeida Junior DR, et al. The impact of grain-scale strain localization on strain hardening of a high-Mn steel: real-time tracking of the transition from the γ→ ε→ α’ transformation to twinning. Acta Mater. 2020; 197: 123–136. doi: 10.1016/j.actamat.2020.07.038
  • Bouchard PJ, Withers PJ, McDonald SA, et al. Quantification of creep cavitation damage around a crack in a stainless steel pressure vessel. Acta Mater. 2004;52(1):23. doi: 10.1016/j.actamat.2003.08.022
  • Rahman KM, Vorontsov VA, Dye D The effect of grain size on the twin initiation stress in a TWIP steel. Acta Mater. 2015; 89: 247–257. doi: 10.1016/j.actamat.2015.02.008
  • Tsakiris V, Edmonds DV Martensite and deformation twinning in austenitic steels. Mater Sci Eng A. 1999; 273–275: 430–436. doi: 10.1016/S0921-5093(99)00322-6
  • Lee TH, Shin E, Oh CS, et al. Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels. Acta Mater. 2010;58(8):3173–3186. doi: 10.1016/j.actamat.2010.01.056
  • Yang CL, Zhang ZJ, Cai T, et al. Recovery of strain-hardening rate in Ni-Si alloys. Sci Rep. 2015; 5:15532. doi: 10.1038/srep15532
  • Takuro M, Toshihiro T Effect of carbon and nitrogen on work-hardening behavior inmetastable austenitic stainless steel. ISIJ Int. 2021; 61: 617–624. doi: 10.2355/isijinternational.ISIJINT-2020-535
  • Leszek AD, Wojciech B, Janusz M Effect of strain deformation rates on forming the structure and mechanical properties of high-manganese austenitic TWIP steels. Advan In Mater And Processing Technol. 2016; 2: 490–502. doi: 10.1080/2374068X.2016.1247229
  • Yu-Hsuan C, Tai-Cheng C, Hung-Bin L, et al. Effect of micro-shot peening on the fatigue performance of AISI 304 stainless steel. Metals. 2021; 11: 1408–1420. doi: 10.3390/met11091408
  • Chandra Sekhar K, Kashyap BP, Siva Kumar M, et al. Advances in Materials & Processing: Challenges & Opportunities (AMPCO-2017). Metallurgical and Materials Engineering Department; 2017 Nov 30 to Dec 2; IIT Roorkee, India. 2018; p. 16871–16879. doi:10.1016/j.matpr.2018.04.089.
  • Schramn RE, Reed RP Stacking fault energies of seven commercial austenitic stainless steels. Metall Trans A. 1975; 6: 1345–1351. doi: 10.1007/BF02641927
  • Rhodes CG, Thompson AW. The composition dependence of stacking fault energy in austenitic stainless steels. Metall Trans A. 1977;8(12):1901–1906. doi: 10.1007/BF02646563
  • Pickering FB, In: Dunlop GL editor. Proceedings of the Stainless Steels. 84, Chalmers University of Technology, Goteborg. The Institute of Metals London: 1985. pp. 12.
  • Wolf M in: Proceedings of the 1st European Conference on Continuous Casting, Florence, Italy. 1991.pp. 2489.
  • Cherkaoui M, Berveiller M, Sabar H. Micromechanical modeling of martensitic transformation induced plasticity (TRIP) in austenitic single crystals. Int J Plast. 1998;14(7):597–626. doi: 10.1016/S0749-6419(99)80000-X
  • Taylor AS, Hodgson PD. Dynamic behaviour of 304 stainless steel during high Z deformation. Mater Sci Eng A. 2011;528(9):3310–3320. doi: 10.1016/j.msea.2010.12.093
  • Chandra Sekhar K, Kashyap BP, Sangal S, A process of notch wavy rolling for strengthening metal sheets. Mater Manuf Processes. 2016; 31: 781–786. doi: 10.1080/10426914.2015.1059450
  • Chandra Sekhar K, Kashyap BP, Sangal S, et al. Strengthening of a thin austenitic stainless steel coil by cold wavy rolling with no magnetic and dimensional changes. Philos Mag Lett. 2015;95(10):483–488. doi: 10.1080/09500839.2015.1096426
  • Xu L, Takaki K, Takamoto I Creep–fatigue life evaluation of type 304 stainless steel under non-proportional loading. Int J Pressure Vessels And Piping 2021; 194: 104515. doi: 10.1016/j.ijpvp.2021.104515
  • Petit B, Gey N, Cherkaoui M, et al. Deformation behavior and microstructure/texture evolution of an annealed 304 AISI stainless steel sheet. Experimental and micromechanical modeling. Int J Plast. 2007;23(2):323–341. doi: 10.1016/j.ijplas.2006.07.002
  • Gutierrez-Urrutia I, Raabe D. Dislocation and twin substructure evolution during strain hardening of an Fe–22 wt.% Mn–0.6 wt.% C TWIP steel observed by electron channeling contrast imaging. Acta Mater. 2011;59(16):6449–6462. doi: 10.1016/j.actamat.2011.07.009
  • Zongchi W, Shouwen S, Yu J, et al. Combining multiscale structure and TRIP effect to enhance room temperature tensile properties of 304 stainless steel by cryogenic cyclic plastic strengthening. Scripta Mater. 2023; 234: 115581. doi: 10.1016/j.scriptamat.2023.115581
  • Kwok TWJ, Gong P, Xu X, et al. Microstructure evolution and tensile behaviour of a cold rolled 8 WtPctMn medium manganese steel. Metall Mater Trans A. 2022; 53: 597. doi: 10.1007/s11661-021-06534-9
  • Yusuke I, Kartik P, Atsushi I, et al. Transmission X ray diffraction characterization of deformation induced martensite in 301 and 304 stainless steels rolled at 77K: role of grain size. Mater Sci Eng A. 2020; 794: 139984. doi: 10.1016/j.msea.2020.139984

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.