13
Views
0
CrossRef citations to date
0
Altmetric
Research article

Effect of methane flow in inverse diffusion flame and surface morphology on synthesis of copper–carbon nanotubes composite

, &
Accepted 23 Jun 2024, Published online: 01 Jul 2024

References

  • Mohammad MR, Ahmed DS, Mohammed MKA. ZnO/Ag nanoparticle-decorated single-walled carbon nanotubes (SWCNTs) and their properties. Surf Rev Lett. 2020 Mar;27(3):9. doi: 10.1142/s0218625x19501233
  • Ahmed DS, Mohammed MKA, Mohammad MR. Sol-gel synthesis of Ag-doped titania-coated carbon nanotubes and study their biomedical applications. Chem Pap. 2020 Jan;74(1):197–208. doi: 10.1007/s11696-019-00869-9
  • Han WW, Zhou Y, Zhu T, et al. Combustion synthesis of defect -rich carbon nanotubes as anodes for sodium-ion batteries. Appl Surf Sci. 2020 Aug;520:8. doi: 10.1016/j.apsusc.2020.146317
  • Han WW, Chen D, Li QF, et al. Ultrafast flame growth of carbon nanotubes for high-rate sodium storage. J Power Sources. 2019 Nov;439:6. doi: 10.1016/j.jpowsour.2019.227072
  • Han WW, Ya YC, Chu HQ, et al. Morphological evolution of soot emissions from a laminar co-flow methane diffusion flame with varying oxygen concentrations. J Energy Inst. 2020 Feb;93(1):224–234. doi: 10.1016/j.joei.2019.03.006
  • Vander Wal RL, Ticich TM, Curtis VE. Flame synthesis of metal-catalyzed single-wall carbon nanotubes. J Phys Chem A. 2000 Aug;104(31):7209–7217. doi: 10.1021/jp994304n
  • Vander Wal RL. Flame synthesis of substrate-supported metal-catalyzed carbon nanotubes. Chem Phys Lett. 2000 Jun;324(1–3):217–223. doi: 10.1016/s0009-2614(00)00492-9
  • Memon NK, Xu F, Sun G, et al. Flame synthesis of carbon nanotubes and few-layer graphene on metal-oxide spinel powders. 2013;63:478–486. doi: 10.1016/j.carbon.2013.07.023
  • Chu H, Han W, Ren F, et al. Flame synthesis of carbon nanotubes on different substrates in methane diffusion flames. ES Energy Environ. 2018. doi: 10.30919/esee8c165
  • Kruszka B, Terzyk AP, Wiśniewski M, et al. Synthesis of carbon nanotubes and nanotube forests on copper catalyst. Mater Res Express. 2014 Sep 2;1(3):035040. doi: 10.1088/2053-1591/1/3/035040
  • Zhu J, Jia J, Kwong F-L, et al. Synthesis of bamboo-like carbon nanotubes on a copper foil by catalytic chemical vapor deposition from ethanol. 2012;50(7):2504–2512. doi: 10.1016/j.carbon.2012.01.073
  • Takagi D, Homma Y, Hibino H, et al. Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett. 2006 Dec;6(12):2642–2645. doi: 10.1021/nl061797g
  • Zhou W, Han Z, Wang J, et al. Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett. 2006;6(12):2987–2990. doi: 10.1021/nl061871v
  • Cui RL, Zhang Y, Wang JY, et al. Comparison between copper and iron as catalyst for chemical vapor deposition of horizontally aligned ultralong single-walled carbon nanotubes on silicon substrates. J Phys Chem C. 2010 Sep;114(37):15547–15552. doi: 10.1021/jp100286c
  • How HC, Chow YL, Wong HY, et al. Synthesising copper-carbon nanotube composites through methane diffusion flame. Mater Today Proc. 2022;66:2655–2659. doi: 10.1016/j.matpr.2022.06.489
  • Deck CP, Vecchio K. Prediction of carbon nanotube growth success by the analysis of carbon–catalyst binary phase diagrams. Carbon. 2006;44(2):267–275. doi: 10.1016/j.carbon.2005.07.023
  • Padilla O, Gallego J, Santamaría A. Using benzene as growth precursor for the carbon nanostructure synthesis in an inverse diffusion flame reactor. Diam Relat Mater. 2018;86:128–138. doi: 10.1016/j.diamond.2018.04.024
  • Wu K-T, Essenhigh RH. Mapping and structure of inverse diffusion flames of methane. Proc Combust Inst. 1985 Jan 1;20(1):1925–1932. doi: 10.1016/S0082-0784(85)80691-3
  • Sidebotham GW, Glassman I. Flame temperature, fuel structure, and fuel concentration effects on soot formation in inverse diffusion flames. Combustion And Flame. 1992 Sep;90(3–4):269–283. doi: 10.1016/0010-2180(92)90088-7
  • Moreira AH, Benedetti AV, Cabot PL, et al. Electrochemical behaviour of copper electrode in concentrated sulfuric acid solutions. Electrochim Acta. 1993;38(7):981–987. doi: 10.1016/0013-4686(93)87018-9
  • Safaei B, How HC, Scribano G. A computational study on synthesis of carbon nanotubes in a sooty inverse diffusion flame. Int J Environ Sci Technol. 2023 Mar 1;20(3):1–10. doi: 10.1007/s13762-022-04143-6
  • Hou S-S, Huang W-C, Lin T-H. Flame synthesis of carbon nanostructures using mixed fuel in oxygen-enriched environment. J Nanopart Res. 2012;14(11):1–11. doi: 10.1007/s11051-012-1243-4
  • Vander Wal RL, Ticich TM, Curtis VE. Diffusion flame synthesis of single-walled carbon nanotubes. Chem Phys Lett. 2000;323(3):217–223. doi: 10.1016/S0009-2614(00)00522-4
  • Kempema NJ, Long MB. Combined optical and TEM investigations for a detailed characterization of soot aggregate properties in a laminar coflow diffusion flame. Combustion And Flame. 2016 Feb;164:373–385. doi: 10.1016/j.combustflame.2015.12.001
  • Hamzah N, Mohd Yasin MF, Mohd Yusop MZ, et al. Growth region characterization of carbon nanotubes synthesis in heterogeneous flame environment with wire-based macro-image analysis. Diam Relat Mater. 2019;99. doi: 10.1016/j.diamond.2019.107500
  • Majeed SM, Mohammed MKA, Ahmed DS. Efficient and hysteresis-free mixed-dimensional 2D/3D perovskite solar cells using ethyl lactate as a green additive to perovskite precursor solutions. J Mater Chem C. 2022 Nov;10(43):16480–16491. doi: 10.1039/d2tc03313e
  • Memon NK, Tse SD, Al-Sharab JF, et al. Flame synthesis of graphene films in open environments. 2011;49(15):5064–5070. doi: 10.1016/j.carbon.2011.07.024
  • Dijon J, Szkutnik PD, Fournier A, et al. How to switch from a tip to base growth mechanism in carbon nanotube growth by catalytic chemical vapour deposition. Carbon. 2010;48(13):3953–3963. doi: 10.1016/j.carbon.2010.06.064
  • Yuan L, Li T, Saito K. Growth mechanism of carbon nanotubes in methane diffusion flames. 2003;41(10):1889–1896. doi: 10.1016/s0008-6223(03)00204-5
  • Sinnott SB, Andrews R, Qian D, et al. Model of carbon nanotube growth through chemical vapor deposition. Chem Phys Lett. 1999;315(1):25–30. doi: 10.1016/S0009-2614(99)01216-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.