29
Views
0
CrossRef citations to date
0
Altmetric
Research article

Effect of the lattice structures on mechanical characterisation of additively manufactured Ti-6Al-4V for biomedical application

, & ORCID Icon
Accepted 06 Jul 2024, Published online: 17 Jul 2024

References

  • Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5):363–408. doi: 10.1615/critrevbiomedeng.v40.i5.10
  • Elsayed M, Ghazy M, Youssef Y, et al. Optimization of SLM process parameters for Ti6Al4V medical implants. Rapid Prototyping J. 2019 Apr;25(3):433–447. doi: 10.1108/rpj-05-2018-0112
  • Soro N, Brodie EG, Abdal-Hay A, et al. Addi- tive manufacturing of biomimetic titanium-tantalum lattices for biomedical implant applications. Mater Des. 2022 Jun;218:110688. doi: 10.1016/j.matdes.2022.110688
  • Song C, Liu L, Deng Z, et al. Research progress on the design and performance of porous titanium alloy bone implants. J Mater Res And Technol. 2023 Mar;23:2626–2641. doi: 10.1016/j.jmrt.2023.01.155
  • Shoujin Z, Qirui W, Jianhua Y. Mechanical properties of 316L stainless steel porous structure formed by selective laser melting. Infrared And Laser Eng. 2020;49(8):75–80. doi: 10.15980/j.tzzz.2020.01.018
  • Betteridge O, Hassanin H, El-Sayed MA, et al. Fabrication and optimisation of Ti-6Al-4V lattice- structured total shoulder implants using laser additive manufacturing. Mater. 2022 Apr;15(9):3095. doi: 10.3390/ma15093095
  • Sing SL, Wiria FE, Yeong WY. Selective laser melting of lattice structures: a statistical approach to manufacturability and mechanical behavior. Robot Comput-Integr Manuf. 2018 Feb;49:170–180. doi: 10.1016/j.rcim.2017.06.006
  • Bobbert FSL, Lietaert K, Eftekhari AA, et al. Additively manufactured metallic porous biomaterials based on minimal surfaces: a unique combination of topological, mechanical, and mass transport properties. Acta Biomater. 2017 Apr;53:572–584. doi: 10.1016/j.actbio.2017.02.024
  • Van Bael S, Chai YC, Truscello S, et al. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomater. 2012 Jul;8(7):2824–2834. doi: 10.1016/j.actbio.2012.04.001
  • Deng F, Liu L, Li Z, et al. 3D printed Ti6Al4V bone scaffolds with different pore structure effects on bone ingrowth. J Biol Eng. 2021 Jan;15(1). doi: 10.1186/s13036-021-00255-8
  • Yan C, Hao L, Hussein A, et al. Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. J Mech Behav Biomed Mater. 2015 Nov;51:61–73. doi: 10.1016/j.jmbbm.2015.06.024
  • Zhao D, Huang Y, Ao Y, et al. Effect of pore geometry on the fatigue properties and cell affinity of porous titanium scaffolds fabricated by selective laser melting. J Mech Behav Biomed Mater. 2018 Dec;88:478–487. doi: 10.1016/j.jmbbm.2018.08.048
  • Yu G, Li Z, Li S, et al. The select of internal architecture for porous Ti alloy scaffold: a compromise between mechanical properties and permeability. Mater Des. 2020 Jul;192:108754. doi: 10.1016/j.matdes.2020.108754
  • Wei-Hui W, Yong-Qiang Y, Dong-Ming X, et al. Pore forming results of controllable ultra-light structured parts by selective laser melting. Optics And Precis Eng. 2017;25(6):1547–1556. doi: 10.3788/ope.20172506.1547
  • Biemond JE, Aquarius R, Verdonschot N, et al. Frictional and bone ingrowth properties of engineered surface topographies produced by electron beam technology. Arch Orthop Trauma Surg. 2010 Dec;131(5):711–718. doi: 10.1007/s00402-010-1218-9
  • Wang Z, Wang C, Li C, et al. Analysis of factors influencing bone ingrowth into three- dimensional printed porous metal scaffolds: a review. J Alloys And Com- Pounds. 2017 Sep;717:271–285. doi: 10.1016/j.jallcom.2017.05.079
  • Maconachie T, Leary M, Lozanovski B, et al. SLM lattice structures: properties, performance, applications and challenges. Mater Des. 2019;183:108137. doi: 10.1016/j.matdes.2019.108137
  • Pandey A, Awasthi A, Saxena KK. Metallic implants with properties and latest production techniques: a review. Adv Mater And Process Technol. 2020 Mar;6(2):405–440. doi: 10.1080/2374068x.2020.1731236
  • Kumar A, Kumar D, Faisal N, et al. Application of 3D printing technology for medical implants: a state-of-the-art review. Adv Mater And Process Technol. 2023 Mar;10(2):357–372. doi: 10.1080/2374068x.2023.2193788
  • Al‐Ketan O, Abu Al‐Rub RK. MSLattice: a free software for generating uniform and graded lattices based on triply periodic minimal surfaces. Mat Des & Process Comms. 2020, 3(6). doi: 10.1002/mdp2.205
  • Syrlybayev D, Perveen A, Talamona D. Experimental investigation of mechanical properties and energy absorption capabilities of hybrid lattice structures manufactured using fused filament fabrication. Int J Adv Manuf Technol. 2023;125(5–6):2833–2850. doi: 10.1007/s00170-023-10922-3
  • ASTM E8M-16a - standard test methods for tension testing of metallic materials. Am Soc For Test And Mater. doi: 10.1520/E0008_E0008M-16AE01
  • Kim J-K, Yi S-T. Application of size effect to compressive strength of concrete members. Sadhana. 2002 Aug;27(4):467–484. doi: 10.1007/BF02706995
  • Suresh S, Sun C-N, Tekumalla S, et al. Mechanical properties and in vitro cytocompatibility of dense and porous Ti–6Al–4V ELI manufactured by selective laser melting technology for biomedical applications. J Mech Behav Biomed Mater. 2021 Nov;123:104712. doi: 10.1016/j.jmbbm.2021.104712
  • Li X, Xiao L, Song W. Compressive behavior of selective laser melting printed gyroid structures under dynamic loading. Addit Manuf. 2021 Oct;46:102054–102054. doi: 10.1016/j.addma.2021.102054
  • Keles O, Abdelmagid G, Adesina AY, et al. Additive manufacturing of layer of Ti6Al4V alloy: morphology and metallurgical properties. Adv Mater And Process Technol. 2020 Oct;8(1):875–883. doi: 10.1080/2374068x.2020.1835009
  • Kanagaraja S, Wennerberg A, Eriksson C, et al. Cellular reactions and bone apposition to titanium surfaces with different surface roughness and oxide thickness cleaned by oxidation. Biomaterials. 2001 Jul;22(13):1809–1818. doi: 10.1016/s0142-9612(00)00362-8