0
Views
0
CrossRef citations to date
0
Altmetric
Research article

Microstructural and mechanical properties of Al-Al2O3 micro and nanocomposite fabricated by stir casting

, ORCID Icon, &
Accepted 06 Jul 2024, Published online: 17 Jul 2024

References

  • Singh M, Mondal DP, Modi OP, et al. Two-body abrasive wear behaviour of aluminium alloy–sillimanite particle reinforced composite. Wear. 2002;253:357–368. doi: 10.1016/S0043-1648(02)00153-9
  • Deuis RL, Subramaian C, Yellup JM. Dry sliding wear of aluminium composites—a review. Composite Sci Technol. 1997;57(4):415–435. doi: 10.1016/S0266-3538(96)00167-4
  • Das S, Das S, Das K. RETRACTED: abrasive wear of zircon sand and alumina reinforced Al–4.5 wt%Cu alloy matrix composites – a comparative study. Composite Sci Technol. 2007;67(3–4):746–751. doi: 10.1016/j.compscitech.2006.05.001
  • Das S, Udarabanu V, Das S, Das K. Synthesis and characterization of zircon sand/Al-4.5 wt% Cu composite produced by stir casting route. J Mater Sci. 2006;41(14):4668–4677. doi: 10.1007/s10853-006-0056-1
  • Ranganath G, Sharma SC, Krishna M. Dry sliding wear of garnet reinforced zinc/aluminium metal matrix composites. Wear. 2001;251:1408–1413. doi: 10.1016/S0043-1648(01)00781-5
  • Sharma SC. The sliding wear behavior of Al6061–garnet particulate composites. Wear. 2001;249:1036–1045. doi: 10.1016/S0043-1648(01)00810-9
  • Somani N, Tyagi YK, Kumar P, et al. Enhanced tribological properties of SiC reinforced copper metal matrix composites. Mater Res Express. 2019;6(1):016549. doi: 10.1088/2053-1591/aae6dc
  • Somani N, Gautam YK, Sharma SK, et al. Statistical analysis of dry sliding wear and friction behavior of Cu/SiC sintered composite. In: AIP Conference Proceedings, LPU, Jalandhar; 2018. p. 020018.
  • Wang N, Wang Z, Weatherly GC. Formation of magnesium aluminate (spinel) in cast SiC particulate-reinforced Al (A356) metal matrix composites. Metallurgical Mater Trans A. 1992;23(5):1423–1430. doi: 10.1007/BF02647325
  • Chaudhury SK, Singh AK, Sivaramakrishnan CS, et al. Wear and friction behavior of spray formed and stir cast Al–2Mg–11TiO2 composites. Wear. 2005;258:759–767. doi: 10.1016/j.wear.2004.09.007
  • Hamid AA, Ghosh PK, Jain SC, et al. The influence of porosity and particles content on dry sliding wear of cast in situ Al(Ti)–Al2O3(TiO2) composite. Wear. 2008;265:14–26. doi: 10.1016/j.wear.2007.08.018
  • Jun D, Hui LY, Rong YS, et al. Dry sliding friction and wear properties of Al2O3 and carbon short fibres reinforced Al–12Si alloy hybrid composites. Wear. 2004;257(9–10):930–940. doi: 10.1016/j.wear.2004.05.009
  • Kok K. Production and mechanical properties of Al2O3 particle reinforced 2024 aluminium alloy composites. J Mater Process Technol. 2001;161(3):381–387. doi: 10.1016/j.jmatprotec.2004.07.068
  • Hashim J. The production of cast metal matrix composite by a modified stir casting method. JurnalTeknologi. 2001;35:9–20.
  • Gupta NK, Kumar M, Thakre M. The mechanical and tribological characteristics of Al6061 self-healing materials. Mater Res Express. 2019;6(8):0865d5. doi: 10.1088/2053-1591/ab23b1
  • Sahina Y, Acilar M. Production and properties of SiCp- reinforced aluminium alloy composites. Compos: Part A. 2003;34(8):709–718. doi: 10.1016/S1359-835X(03)00142-8
  • Naher S, Brabazon D, Looney L. Simulation of the stir casting process. J Mater Process Technol. 2003;143-144:567–571. doi: 10.1016/S0924-0136(03)00368-6
  • Dwivedi DK, Arjun TS, Thakur P, et al. Sliding wear and friction behaviour of Al–18% Si–0.5% Mg alloy. J Mater Process Technol. 2004;152:323–328. doi: 10.1016/j.jmatprotec.2004.04.379
  • Das K, Bandyopadhyay TK. Synthesis and characterization of zirconium carbide-reinforced iron-based composite. Mater Sci Eng A. 2004;379(1–2):83–91. doi: 10.1016/j.msea.2003.12.022
  • Chaudhury SK, Singh AK, Sivaramakrishnan CS, et al. Wear and friction behavior of spray formed and stir cast Al–2Mg–11TiO2 composites. Wear. 2005;258(5–6):759–767. doi: 10.1016/j.wear.2004.09.007
  • Mondal DP, Das S. High stress abrasive wear behaviour of aluminium hard particle composites: effect of experimental parameters, particle size and volume fraction. Tribol Int. 2006;39:470–478. doi: 10.1016/j.triboint.2005.03.003
  • Jian-Min H, Zhao-Ling W, Shi-Hai C, et al. Investigation of defects in SiCp/A356 composites made by a stir casting method. J Ceramic Process Res. 2006;8(1):74–77.
  • Vencl A, Rac A, Bobić I, et al. Tribological properties of Al- Si alloy A356 reinforced with Al2O3 particles. Tribol In Ind. 2006;28(1):27–31.
  • Aigbodiona VS, Hassan SB. Effects of silicon carbide reinforcement on microstructure and properties of cast Al–si–Fe/SiC particulate composites. Mater Sci Eng A. 2007;447(1–2):355–360. doi: 10.1016/j.msea.2006.11.030
  • Abdizadeha H, Baharvandib HR, Moghaddam KS. Comparing the effect of processing temperature on microstructure and mechanical behavior of (ZrSio4 or TiB2)/aluminum composites. Mater Sci Eng A. 2008;498(1–2):53–58. doi: 10.1016/j.msea.2008.07.009
  • Reddy TVS, Dwivedi DK, Jain NK. Adhesive wear of stir cast hypereutectic Al–si–mg alloy under reciprocating sliding conditions. Wear. 2009;266(1–2):1–5. doi: 10.1016/j.wear.2008.05.003
  • Yar AA, Montazerian M, Abdizadeh H, et al. Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano- particle MgO. J Alloys Compd. 2009;484:400–404. doi: 10.1016/j.jallcom.2009.04.117
  • Sharma A, Das S. Study of age hardening behavior of Al–4.5wt%Cu/zircon sand composite in different quenching media – a comparative study. Mater Des. 2009;30(9):3900–3903. doi: 10.1016/j.matdes.2009.03.022
  • Ilo S, Just C, Badisch E, et al. Effects of interface formation kinetics on the microstructural properties of wear-resistant metal–matrix composites. Mater Sci Eng A. 2010;527(23):6378–6385. doi: 10.1016/j.msea.2010.06.060
  • Rajaram G, Kumaran S, Rao TS. High temperature tensile and wear behaviour of aluminum silicon alloy. Mater Sci Eng A. 2010;528(1):247–253. doi: 10.1016/j.msea.2010.09.020
  • Onat A. Mechanical and dry sliding wear properties of silicon carbide particulate reinforced aluminium–copper alloy matrix composites produced by direct squeeze casting method. J Alloys Compd. 2010;489(1):119–124. doi: 10.1016/j.jallcom.2009.09.027
  • Devaraju A, Kumar A, Kumaraswamy A, et al. Influence of reinforcements (SiC and Al2O3) and rotational speed on wear and mechanical properties of aluminum alloy 6061-T6 based surface hybrid composites produced via friction stir processing. Mater Des. 2013;51:331–341. doi: 10.1016/j.matdes.2013.04.029
  • Rao RN, Das S. Effect of SiC content and sliding speed on the wear behaviour of aluminium matrix composites. Mater Des. 2011;32(2):1066–1071. doi: 10.1016/j.matdes.2010.06.047
  • Sajjadi SA, Ezatpour HR, Beygi H. Microstructure and mechanical properties of Al–Al2O3 micro and nano composites fabricated by stir casting. Mater Sci Eng A. 2011;528(29–30):8765–8771. doi: 10.1016/j.msea.2011.08.052
  • Mazahery A, Shabani MO. study on microstructure and abrasive wear behavior of sintered Al matrix composites. Ceram Int. 2012;38:4263–4269. doi: 10.1016/j.ceramint.2012.02.008
  • Alidokht SA, Abdollah-Zadeha A, Soleymani S, et al. Evaluation of microstructure and wear behavior of friction stir processed cast aluminum alloy. Mater Charact. 2022;63, 2012, pp. 90–97. doi: 10.1016/j.matchar.2011.11.007
  • Mazaheri Y, Meratian M, Emadi R, et al. Comparison of microstructural and mechanical properties of Al-TiC, Al-B4C and Al-TiC-B4C composites prepared by casting techniques. Mater Sciamp; Eng A. 2023;560, 2013, pp. 278–287. doi: 10.1016/j.msea.2012.09.068
  • Somani N, Kumar Gupta N. Effect of TiC nanoparticles on microstructural and tribological properties of Cu-TiC nano-composites. J Eng Manufacture. 2022;236(4):319–336. doi: 10.1177/09544054211029828
  • Grun F, Summer F, Pondicherry KS, et al. Tribological functionality of aluminium sliding materials with hard phases under lubricated conditions. Wear. 2013;298-299:27–134. doi: 10.1016/j.wear.2012.11.048
  • Uthayakumar M, Aravindan S, Rajkumar K. Wear performance of Al-SiC-B4C hybrid composites under dry sliding conditions. Mater Des. 2013;47:456–464. doi: 10.1016/j.matdes.2012.11.059

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.