13
Views
0
CrossRef citations to date
0
Altmetric
Research article

Effect of processing sequences in multi-pass friction stir processing on microstructure, microtexture and microhardness of 6063 aluminum alloy

, , &
Accepted 31 Jul 2024, Published online: 07 Aug 2024

References

  • Ma Z. Friction stir processing technology: a review. Metallurgical And Mater Trans A. 2008;39(3):642–658. doi: 10.1007/s11661-007-9459-0
  • Mishra RS, Ma Z, Charit I. Friction stir processing: a novel technique for fabrication of surface composite. Mater Sci Eng: A. 2003;341(1–2):307–310. doi: 10.1016/S0921-5093(02)00199-5
  • Mishra RS, Mahoney MW, McFadden SX, et al. High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scr Materialia. 1999;42(2):163–168. doi: 10.1016/S1359-6462(99)00329-2
  • Darras B, Kishta E. Submerged friction stir processing of AZ31 magnesium alloy. Mater & Des. 2013; 47: 133–137. doi: 10.1016/j.matdes.2012.12.026
  • Zhu Y, Zhou M, Geng Y, et al. Microstructural evolution and its influence on mechanical and corrosion behaviors in a high-Al/Zn containing duplex Mg-li alloy after friction stir processing. J Mater Sciamp; Technol. 2024; 184: 245–255. doi: 10.1016/j.jmst.2023.10.019
  • Thangarasu A, Murugan N, Dinaharan I, et al. Synthesis and characterization of titanium carbide particulate reinforced AA6082 aluminium alloy composites via friction stir processing. Archiv Civ And Mech Eng. 2015; 15 (2): 324–334. doi: 10.1016/j.acme.2014.05.010
  • Woo W, Choo H, Brown DW, et al. Angular distortion and through-thickness residual stress distribution in the friction-stir processed 6061-T6 aluminum alloy. Mater Sci Eng: A. 2006; 437 (1): 64–69. doi: 10.1016/j.msea.2006.04.066
  • Xu W, Liu J, Zhu H, et al. Influence of welding parameters and tool pin profile on microstructure and mechanical properties along the thickness in a friction stir welded aluminum alloy. Mater & Des. 2013; 47: 599–606. doi: 10.1016/j.matdes.2012.12.065
  • Mao Y, Ke L, Liu F, et al. Effect of tool pin eccentricity on microstructure and mechanical properties in friction stir welded 7075 aluminum alloy thick plate. Mater & Des (1980-2015). 2014; 62: 334–343. doi: 10.1016/j.matdes.2014.05.038
  • Ma ZY, Mishra RS, Liu FC. Superplastic behavior of micro-regions in two-pass friction stir processed 7075Al alloy. Mater Sci Eng: A. 2009;505(1–2):70–78. doi: 10.1016/j.msea.2008.11.016
  • Nascimento F, Santos T, Vilaça P, et al. Microstructural modification and ductility enhancement of surfaces modified by FSP in aluminium alloys. Mater Sci Eng: A. 2009;506(1–2):16–22. doi: 10.1016/j.msea.2009.01.008
  • Chen Y, Ding H, Li J, et al. Influence of multi-pass friction stir processing on the microstructure and mechanical properties of Al-5083 alloy. Mater Sci Eng: A. 2016;650:281–289. doi: 10.1016/j.msea.2015.10.057
  • Ghanbari D, Kasiri Asgarani M, Amini K, et al. Influence of heat treatment on mechanical properties and microstructure of the Al2024/SiC composite produced by multi–pass friction stir processing. Measurement. 2017;104:151–158. doi: 10.1016/j.measurement.2017.03.024
  • Orozco-Caballero A, Álvarez-Leal M, Verdera D, et al. Evaluation of the mechanical anisotropy and the deformation mechanism in a multi-pass friction stir processed Al-zn-mg-cu alloy. Mater & Des. 2017;125:116–125. doi: 10.1016/j.matdes.2017.03.081
  • Ramesh Babu S, Senthil Kumar VS, Karunamoorthy L, et al. Investigation on the effect of friction stir processing on the superplastic forming of AZ31B alloy. Mater & Des. 2014;53:338–348. doi: 10.1016/j.matdes.2013.07.005
  • Zhao Y, Ding Z, Shen C, et al. Interfacial microstructure and properties of aluminum–magnesium AZ31B multi-pass friction stir processed composite plate. Mater & Des. 2016;94:240–252. doi: 10.1016/j.matdes.2016.01.047
  • Satyanarayana MV, Kumar A, Thapliyal S. Effect of microstructure and precipitate formation on mechanical and corrosion behavior of friction stir processed AA6061 alloy using different cooling media. Proc Inst Mech Eng Part L: J Mater: Des And Appl. 2021;235(11):2454–2469. doi: 10.1177/14644207211005790
  • Ali LF, Kuppuswamy N, Soundararajan R, et al. Microstructural evolutions and mechanical properties enhancement of AA 6063 alloy reinforced with tungsten (W) nanoparticles processed by friction stir processing. Mater Charact. 2021;172:110903. doi: 10.1016/j.matchar.2021.110903
  • Al-Fadhalah KJ, Almazrouee AI, Aloraier AS. Microstructure and mechanical properties of multi-pass friction stir processed aluminum alloy 6063. Mater & Des. 2014;53:550–560. doi: 10.1016/j.matdes.2013.07.062
  • Venkateswarlu G, Devaraju D, Davidson MJ, et al. Effect of overlapping ratio on mechanical properties and formability of friction stir processed Mg AZ31B alloy. Mater & Des. 2013;45:480–486. doi: 10.1016/j.matdes.2012.08.031
  • Alavi Nia A, Omidvar H, Nourbakhsh SH. Effects of an overlapping multi-pass friction stir process and rapid cooling on the mechanical properties and microstructure of AZ31 magnesium alloy. Mater & Des. 2014;58:298–304. doi: 10.1016/j.matdes.2014.01.069
  • Hütsch LL, Hütsch J, Herzberg K, et al. Increased room temperature formability of Mg AZ31 by high speed friction stir processing. Mater & Des (1980-2015). 2014;54:980–988. doi: 10.1016/j.matdes.2013.08.108
  • Leitao C, Arruti E, Aldanondo E, et al. Aluminium-steel lap joining by multipass friction stir welding. Mater & Des. 2016;106:153–160. doi: 10.1016/j.matdes.2016.05.101
  • ASTM. Standard test methods for determining average grain size, E112-13. West Conshohocken (PA): ASTM International; 2013.
  • Murr LE, Liu G, McClure JC. Dynamic recrystallization in friction-stir welding of aluminium alloy 1100. J Mater Sci Lett. 1997;16(22):1801–1803. doi: 10.1023/A:1018556332357
  • Mahoney MW, Rhodes CG, Flintoff JG, et al. Properties of friction-stir-welded 7075 T651 aluminum. Metallurgical And Mater Trans A. 1998;29(7):1955–1964. doi: 10.1007/s11661-998-0021-5
  • Rhodes CG, Mahoney MW, Bingel WH, et al. Effects of friction stir welding on microstructure of 7075 aluminum. Scr Materialia. 1997;36(1):69–75. doi: 10.1016/S1359-6462(96)00344-2
  • Sakai T, Belyakov A, Kaibyshev R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog In Mater Sci. 2014;60:130–207. doi: 10.1016/j.pmatsci.2013.09.002
  • Hughes DA, Hansen N. High angle boundaries formed by grain subdivision mechanisms. Acta Materialia. 1997;45(9):3871–3886. doi: 10.1016/S1359-6454(97)00027-X
  • Kuhlmann-Wilsdorf D, Hansen N. Geometrically necessary, incidental and subgrain boundaries. Scr Metallurgica et Materialia. 1991;25(7):1557–1562. doi: 10.1016/0956-716X(91)90451-6
  • Fonda R, Bingert J. Texture variations in an aluminum friction stir weld. Scr Materialia. 2007;57(11):1052–1055. doi: 10.1016/j.scriptamat.2007.06.068
  • Fonda R. Development of grain structure during friction stir welding. Scr Materialia. 2004;51(3):243–248. doi: 10.1016/j.scriptamat.2004.04.017
  • Li S, Beyerlein IJ, Bourke MA. Texture formation during equal channel angular extrusion of fcc and bcc materials: comparison with simple shear. Mater Sci Eng: A. 2005;394(1–2):66–77. doi: 10.1016/j.msea.2004.11.032
  • Sato YS, Kokawa H, Ikeda K, et al. Microtexture in the friction-stir weld of an aluminum alloy. Metallurgical And Mater Trans A. 2001;32(4):941–948. doi: 10.1007/s11661-001-0351-z
  • Suhuddin UFHR, Mironov S, Sato YS, et al. Grain structure and texture evolution during friction stir welding of thin 6016 aluminum alloy sheets. Mater Sci Eng: A. 2010;527(7–8):1962–1969. doi: 10.1016/j.msea.2009.11.029
  • El-Rayes MM, El-Danaf EA. The influence of multi-pass friction stir processing on the microstructural and mechanical properties of aluminum alloy 6082. J Mater Process Technol. 2012;212(5):1157–1168. doi: 10.1016/j.jmatprotec.2011.12.017
  • Zhang DL, Zheng L. The quench sensitivity of cast Al-7 wt pct Si-0.4 wt pct Mg alloy. Metallurgical And Mater Trans A. 1996;27(12):3983–3991. doi: 10.1007/BF02595647
  • Bratland DH, Grong Ø, Shercliff H, et al. Overview No. 124 modelling of precipitation reactions in industrial processing. Acta Materialia. 1997;45(1):1–22. doi: 10.1016/S1359-6454(96)00100-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.