1,869
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Mechanistic inferences from clinical reports of SARS-CoV-2

ORCID Icon, ORCID Icon & ORCID Icon
Pages 527-537 | Received 28 Apr 2020, Accepted 11 May 2020, Published online: 27 May 2020

References

  • Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020; 3099(20):19–20.
  • Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel Coronavirus in Wuhan. China Lancet. 2020; 395(10223):497–506.
  • Li X, Geng M, Peng Y, et al. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020;10(2):102–108.
  • Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-NCOV infection from an asymptomatic contact in Germany. N Engl J Med. 2020; 382(10):970–971.
  • He X, Lau EH, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020;26(5):672–675. https://www.medrxiv.org/content/10.1101/2020.03.15.20036707v2
  • Tan W, Lu Y, Zhang J, et al. Viral kinetics and antibody responses in patients with COVID-19. medRxiv [Internet]. 2020. DOI:10.1101/2020.03.24.20042382
  • Guan W, Ni Z, Hu Y, et al. Clinical characteristics of 2019 Novel Coronavirus infection in China. N Engl J Med. 2020;382(18):1708–1720.
  • Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020:ciaa248. DOI:10.1093/cid/ciaa248
  • Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062.
  • Liu J, Liu Y, Xiang P, et al. Neutrophil-to-lymphocyte ratio predicts severe illness patients with 2019 Novel Coronavirus in the early stage. medRxiv [Internet]. 2020. DOI:10.1101/2020.02.10.20021584
  • Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospitalization and critical illness among 4,103 patients with COVID-19 disease in New York City. medRxiv [Internet]. 2020. DOI:10.1101/2020.04.08.20057794
  • Goyal P, Choi J, Pinheiro L, et al. Clinical characteristics of Covid-19 in New York City. N Engl J Med. 2020. DOI:10.1056/NEJMc2010419
  • Caruso D, Zerunian M, Polici M, et al. Chest CT Features of COVID-19 in Rome, Italy. Radiology. 2020. DOI:10.1148/radiol.2020201237
  • Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846–848.
  • Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020:e200994. DOI:10.1001/jamainternmed.2020.0994
  • Wei L, Ming S, Zou B, et al. Viral invasion and type i interferon response characterize the immunophenotypes during COVID-19 infection. SSRN. 2020.
  • Wan S, Yi Q, Fan S, et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP). medRxiv. 2020. DOI:10.1101/2020.02.10.20021832
  • Zahorec R. Ratio of neutrophil to lymphocyte counts—rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl Lek List. 2001; 102(1):5–14.
  • Cataudella E, Giraffa CM, Di MS, et al. Neutrophil-to-lymphocyte ratio: an emerging marker predicting prognosis in elderly adults with community-acquired pneumonia. J Am Geriatr Soc. 2017; 65(8):1796–1801.
  • Hwang SY, Shin TG, Jo IJ, et al. Neutrophil-to-lymphocyte ratio as a prognostic marker in critically-ill septic patients. Am J Emerg Med. 2017;35(2):234–239.
  • Templeton AJ, McNamara MG, Šeruga B, et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst. 2014;106(6):dju124.
  • Zhang B, Zhou X, Zhu C, et al. Immune phenotyping based on neutrophil-to-lymphocyte ratio and IgG predicts disease severity and outcome for patients with COVID-19. medRxiv [Internet]. 2020. DOI:10.1101/2020.03.12.20035048
  • Zhou P, Yang X-L, Wang X-G, et al. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. Nature. 2020;579(7798):270–273.
  • Boni MF, Lemey P, Jiang X, et al. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. bioRxiv [Internet]. 2020. DOI:10.1101/2020.03.30.015008
  • Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020; 367(6483):1260–1263.
  • Lee HKK, Tso EYK, Chau TN, et al. Asymptomatic severe acute respiratory syndrome-associ-ated Coronavirus infection. Emerg Infect. 2003;9(11):1491–1492.
  • He Z, Zhao C, Dong Q, et al. Effects of severe acute respiratory syndrome (SARS) coronavirus infection on peripheral blood lymphocytes and their subsets. Int J Infect Dis. 2005; 9(6):323–330.
  • Booth CM, Matukas LM, Tomlinson GA, et al. Clinical features and short-term outcomes of 144 patients with SARS in the greater toronto area. JAMA. 2003; 289(21):2801–2809.
  • Li T, Qiu Z, Zhang L, et al. Significant changes of peripheral T lymphocyte subsets in patients with severe acute respiratory syndrome. J Infect Dis. 2004; 189(4):648–651.
  • Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–422.
  • Wang C, Xie J, Zhao L, et al. Alveolar macrophage activation and cytokine storm in the pathogenesis of severe COVID-19. Res Sq. 2020. DOI:10.21203/rs.3.rs-19346/v1
  • Lau YL, Peiris JSM, Law H. Role of dendritic cells in SARS coronavirus infection. Hong Kong Med J. 2012;18(4):S28–S30.
  • Zhao J, Zhao J, Perlman S. T Cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome Coronavirus-infected mice. J Virol. 2010;84(18):9318–9325.
  • Chen J, Lau YF, Lamirande EW, et al. Cellular immune responses to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) infection in senescent BALB/c Mice: CD4+ T Cells are important in control of SARS-CoV infection. J Viorl. 2010;84(3):1289–1301.
  • Cheng Y, Cheng G, Chui CH, et al. ABO blood group and susceptibility to severe acute respiratory syndrome. J Am Med Assoc. 2005;293(12):1450–1451.
  • Zhao J, Yang Y, Huang H, et al. Relationship between the ABO Blood Group and the COVID-19 Susceptibility. medRxiv [Internet]. 2020. DOI:10.1101/2020.03.11.20031096
  • Banerjee A, Nasir JA, Budylowski P, et al. Isolation, sequence, infectivity and replication kinetics of SARS-CoV-2. bioRxiv [Internet]. 2020. DOI:10.1101/2020.04.11.037382
  • Wesche DE, Lomas-Neira JL, Perl M, et al. Leukocyte apoptosis and its significance in sepsis and shock. J Leukoc Biol. 2005;78(2):325–337.
  • Schroeder S, Lindemann C, Decker D, et al. Increased susceptibility to apoptosis in circulating lymphocytes of critically ill patients. Langenbeck’s Arch Surg. 2001;386(1):42–46.
  • Roth G, Moser B, Krenn C, et al. Susceptibility to programmed cell death in T-lymphocytes from septic patients: a mechanism for lymphopenia and Th2 predominance. Biochem Biophys Res Commun. 2003; 308(4):840–846.
  • Wu F, Wang A, Liu M, et al. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. medRxiv [Internet]. 2020. DOI:10.1101/2020.03.30.20047365
  • Al-Abdely HM, Midgley CM, Alkhamis AM, et al. Middle east respiratory syndrome coronavirus infection dynamics and antibody responses among clinically diverse patients, Saudi Arabia. Emerging Infect Dis. 2019;25(4):753–766.
  • Ho MS, Chen WJ, Chen HY, et al. Neutralizing antibody response and SARS severity. Emerg Infect Dis. 2005; 11(11):1730–1737.
  • Liu L, Wei Q, Lin Q, et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight. 2019;4(4):1–19.
  • Gao T, Hu M, Zhang X, et al. Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. medRxiv. 2020. DOI:10.1101/2020.03.29.20041962
  • Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. 2020. DOI:10.1016/j.trsl.2020.04.007
  • Shushakova N, Skokowa J, Schulman J, et al. C5a anaphylatoxin is a major regulator of activating versus inhibitory FcgammaRs in immune complex-induced lung disease. J Clin Invest. 2002;110(12):1823–1830.
  • Fox SE, Akmatbekov A, Harbert JL, et al. Pulmonary and cardiac pathology in Covid-19: the first autopsy series from New Orleans medRxiv. 2020. DOI:10.1101/2020.04.06.20050575
  • Smatti MK, Thani AA, Al Yassine HM. Viral-induced enhanced disease illness. Front Microbiol. 2018;9:2991.
  • Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280.
  • Haick AK, Rzepka JP, Brandon E, et al. Neutrophils are needed for an effective immune response against pulmonary rat coronavirus infection, but also contribute to pathology. J Gen Virol. 2014;95(Pt 3):578–590.
  • Li J, Guo M, Tian X, et al. Virus-host interactome and proteomic survey of PMBCs from COVID-19 patients reveal potential virulence factors influencing SARS-CoV-2 pathogenesis. bioRxiv. 2020. DOI:10.1101/2020.03.31.019216
  • Channappanavar R, Fehr AR, Vijay R, et al. Dysregulated Type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe. Cell Press. 2016; 19(2):181–193.
  • Channappanavar R, Fehr AR, Zheng J, et al. IFN-I response timing relative to Virus replication determines MERS coronavirus infection outcomes. J Clin Invest. 2019;129(9):3625–3639.
  • Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014; 14(1):36–49.
  • Zheng HY, Zhang M, Yang CX, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020;17(5):541–543.
  • Wu T, Ji Y, Ashley Moseman E, et al. The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness. Sci Immunol. 2016;1(6):1–27.
  • Brubaker AL, Palmer JL, Kovacs EJ. Age-related dysregulation of inflammation and innate immunity: lessons learned from rodent models. Aging Dis. 2011;2(5):346–360.
  • Smith AG, Sheridan PA, Harp JB, et al. Diet-induced obese mice have increased mortality and altered immune responses when infected with Influenza Virus. J Nutr. 2007;137(5):1236–1243.
  • Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis (*). Annu Rev Immunol. 2009;27(1):165–197.
  • Pei S, Yuan X, Zhang Z, et al. Convalescent plasma to treat COVID-19: Chinese strategy and experiences. medRxiv. 2020. DOI:10.1101/2020.04.07.20056440
  • Duan K, Liu B, Li C, et al. The feasibility of convalescent plasma therapy in severe COVID-19 patients: a pilot study. medRxiv. 2020. DOI:10.1101/2020.03.16.20036145
  • Zarozinski CC, McNally JM, Lohman BL, et al. Bystander sensitization to activation-induced cell death as a mechanism of Virus-induced immune suppression. J Virol. 2000;74(8):3650–3658.
  • Cao WC, Liu W, Zhang PH, et al. Disappearance of antibodies to SARS-associated coronavirus after recovery. N Engl J Med. 2007;357(11):1162–1163. http://authors.nejm.org
  • Tang F, Quan Y, Xin Z-T, et al. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J Immunol. 2011;186(12):7264–7268.
  • Wadman M, Couzin-Frankel J, Kaiser J, et al. How does coronavirus kill? Clinicians trace a ferocious rampage through the body, from brain to toes. Science. 2020;80.
  • Klok FA, Kruip M, Meer NJM, van der , et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;x(xxxx):1–3.
  • Oxley TJ, Mocco J, Majidi S, et al. Large vessel stroke as a presenting feature of Covid-19 in the young. N Engl J Med. 2020;382(20):e60–874.
  • Tang N, Li D, Wang X, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844–847.
  • Kitchens C. Thrombocytopenia and thrombosis in disseminated intravascular coagulation (DIC). Am Soc Hematol. 2009;2009(1):240–246.
  • Goeijenbier M. Review: viral infections and mechanisms of thrombosis and bleeding. J Med Virol. 2012;84(10):1680–1696.
  • Escher R, Breakey N, Lämmle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res. 2020;190:62.
  • Terraube V, O'Donnell JS, Jenkins PV. Factor VIII and von Willebrand factor interaction: biological, clinical and therapeutic importance. Haemophilia. 2010;16(1):3–13.
  • Kurosawa S, Stearns-Kurosawa DJ. Complement, thrombotic microangiopathy and disseminated intravascular coagulation. j Intensive Care. 2014;2(1):1–8.
  • Tang N, Bai H, Chen X, et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094–1099.
  • Paranjpe I, Fuster V, Lala A. Association of treatment dose anticoagulation with in-hospital survival among hospitalized patients with COVID-19. J Am Coll Cardiol. 2020. DOI:10.1016/j.jacc.2020.05.001
  • Bestle D, Heindl MR, Limburg, H, et al. TMPRSS2 and furin are both essential for proteolytic activation and spread of SARS-CoV-2 in human airway epithelial cells and provide promising drug targets. bioRxiv. 2020. DOI:10.1101/2020.04.15.042085
  • Jin Z, Du X, Xu Y. et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020. DOI:10.1038/s41586-020-2223-y
  • Le RQ, Li L, Yuan W, et al. FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell‐induced severe or life‐threatening cytokine release syndrome. The Oncol. 2018;23(8):943–947.
  • Campbell CM, Kahwash R. Will complement inhibition be the new target in treating COVID-19 related systemic thrombosis? Circulation. 2020. DOI:10.1161/CIRCULATIONAHA.120.047419
  • Sallard E, Lescure F-X, Yazdanpanah Y, et al. Type 1 interferons as a potential treatment against COVID-19. Antiviral Res. 2020;178:104791.
  • FDA. Recommendations for Investigational COVID-19 Convalescent Plasma [Internet]. 2020; [cited 2020 May 20]. Available from: https://www.fda.gov/vaccines-blood-biologics/investigational-new-drug-ind-or-device-exemption-ide-process-cber/recommendations-investigational-covid-19-convalescent-plasma#Pathways.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.