222
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Comparative genomic analysis of strong biofilm-forming Klebsiella pneumoniae isolates uncovers novel ISEcp1-mediated chromosomal integration of a full plasmid-like sequence

, , &
Pages 91-109 | Received 03 May 2023, Accepted 12 Oct 2023, Published online: 28 Oct 2023

References

  • Paczosa MK, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev. 2016;80(3):629–661. doi: 10.1128/MMBR.00078-15.
  • Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev. 2017;41(3):252–275. doi: 10.1093/femsre/fux013.
  • Zhang Y, Zhao C, Wang Q, et al. High prevalence of hypervirulent Klebsiella pneumoniae infection in China: geographic distribution, clinical characteristics, and antimicrobial resistance. Antimicrob Agents Chemother. 2016b;60(10):6115–6120. doi: 10.1128/AAC.01127-16.
  • Shon AS, Bajwa RP, Russo TA. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence. 2013;4(2):107–118. doi: 10.4161/viru.22718.
  • Wang G, Zhao G, Chao X, et al. The characteristic of virulence, biofilm and antibiotic resistance of Klebsiella pneumoniae. Int J Environ Res Public Health. 2020;17(17):6278. doi: 10.3390/ijerph17176278.
  • Hsu CR, Lin TL, Chen YC, et al. The role of Klebsiella pneumoniae rmpA in capsular polysaccharide synthesis and virulence revisited. Microbiology. 2011;157(Pt 12):3446–3457. doi: 10.1099/mic.0.050336-0.
  • Hsieh PF, Lin TL, Lee CZ, et al. Serum-induced iron-acquisition systems and TonB contribute to virulence in Klebsiella pneumoniae causing primary pyogenic liver abscess. J Infect Dis. 2008;197(12):1717–1727. doi: 10.1086/588383.
  • Russo TA, Olson R, Macdonald U, et al. Aerobactin mediates virulence and accounts for increased siderophore production under iron-limiting conditions by hypervirulent (hypermucoviscous) Klebsiella pneumoniae. Infect Immun. 2014;82(6):2356–2367. doi: 10.1128/IAI.01667-13.
  • Lai YC, Lin AC, Chiang MK, et al. Genotoxic Klebsiella pneumoniae in Taiwan. PLOS One. 2014;9(5):e96292. doi: 10.1371/journal.pone.0096292.
  • Lu MC, Chen YT, Chiang MK, et al. Colibactin contributes to the hypervirulence of pks+ K1 CC23 Klebsiella pneumoniae in mouse meningitis infections. Front Cell Infect Microbiol. 2017;7:103. doi: 10.3389/fcimb.2017.00103.
  • Lam M, Wick MC, Wyres RR, et al. Genetic diversity, mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in Klebsiella pneumoniae populations. Microb Genom. 2018;4(9):e000196. doi: 10.1099/mgen.0.000196.
  • Lam MMC, Wyres KL, Judd LM, et al. Tracking key virulence loci encoding aerobactin and salmochelin siderophore synthesis in Klebsiella pneumoniae. Genome Med. 2018b;10(1):77. doi: 10.1186/s13073-018-0587-5.
  • Holt KE, Wertheim H, Zadoks RN, et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci U S A. 2015;112(27):E3574–E3581. doi: 10.1073/pnas.1501049112.
  • Brisse S, Fevre C, Passet V, et al. Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization. PLOS One. 2009;4(3):e4982. doi: 10.1371/journal.pone.0004982.
  • Lee IR, Molton JS, Wyres KL, et al. Differential host susceptibility and bacterial virulence factors driving Klebsiella liver abscess in an ethnically diverse population. Sci Rep. 2016;6(1):29316. doi: 10.1038/srep29316.
  • Wyres KL, Wick RR, Judd LM, et al. Distinct evolutionary dynamics of horizontal gene transfer in drug resistant and virulent clones of Klebsiella pneumoniae. PLoS Genet. 2019;15(4):e1008114. doi: 10.1371/journal.pgen.1008114.
  • Chen L, Kreiswirth BN. Convergence of carbapenem-resistance and hypervirulence in Klebsiella pneumoniae. Lancet Infect Dis. 2018;18(1):2–3. doi: 10.1016/S1473-3099(17)30517-0.
  • Ahmed M, Yang Y, Yang Y, et al. Emergence of hypervirulent carbapenem-resistant Klebsiella pneumoniae coharboring a blaNDM-1-carrying virulent plasmid and a blaKPC-2-carrying plasmid in an Egyptian hospital. mSphere. 2021;6(3):e00088-21. doi: 10.1128/mSphere.00088-21.
  • Zafer MM, El Bastawisie MM, Wassef M, et al. Epidemiological features of nosocomial Klebsiella pneumoniae: virulence and resistance determinants. Future Microbiol. 2022;17(1):27–40. doi: 10.2217/fmb-2021-0092.
  • Bandeira M, Carvalho PA, Duarte A, et al. Exploring dangerous connections between Klebsiella pneumoniae biofilms and healthcare-associated infections. Pathogens. 2014;3(3):720–731. doi: 10.3390/pathogens3030720.
  • Jagnow J, Clegg S. Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix- and collagen-coated surfaces. Microbiology. 2003;149(Pt 9):2397–2405. doi: 10.1099/mic.0.26434-0.
  • Hoellinger B, Deboscker S, Danion F, et al. Incidence and time-to-onset of carbapenemase-producing Enterobacterales (CPE) infections in CPE carriers: a retrospective cohort study. Microbiol Spectr. 2022;10(6):e0186822. doi: 10.1128/spectrum.01868-22.
  • Hughes S, Gilchrist M, Heard K, et al. Treating infections caused by carbapenemase-producing Enterobacterales (CPE): a pragmatic approach to antimicrobial stewardship on behalf of the UKCPA Pharmacy Infection Network (PIN). JAC Antimicrob Resist. 2020;2(3):dlaa075. doi: 10.1093/jacamr/dlaa075.
  • Shein AMS, Wannigama DL, Higgins PG, et al. High prevalence of mgrB-mediated colistin resistance among carbapenem-resistant Klebsiella pneumoniae is associated with biofilm formation, and can be overcome by colistin–EDTA combination therapy. Sci Rep. 2022;12(1):12939. doi: 10.1038/s41598-022-17083-5.
  • Stewart PS. Antimicrobial tolerance in biofilms. Microbiol Spectr. 2015;3(3). doi: 10.1128/microbiolspec.MB-0010-2014.
  • Molin S, Tolker-Nielsen T. Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol. 2003;14(3):255–261. doi: 10.1016/s0958-1669(03)00036-3.
  • Murphy CN, Mortensen MS, Krogfelt KA, et al. Role of Klebsiella pneumoniae type 1 and type 3 fimbriae in colonizing silicone tubes implanted into the bladders of mice as a model of catheter-associated urinary tract infections. Infect Immun. 2013;81(8):3009–3017. doi: 10.1128/IAI.00348-13.
  • Chen L, Wen YM. The role of bacterial biofilm in persistent infections and control strategies. Int J Oral Sci. 2011;3(2):66–73. doi: 10.4248/IJOS11022.
  • Balestrino D, Ghigo JM, Charbonnel N, et al. The characterization of functions involved in the establishment and maturation of Klebsiella pneumoniae in vitro biofilm reveals dual roles for surface exopolysaccharides. Environ Microbiol. 2008;10(3):685–701. doi: 10.1111/j.1462-2920.2007.01491.x.
  • Alcantar-Curiel MD, Blackburn D, Saldana Z, et al. Multi-functional analysis of Klebsiella pneumoniae fimbrial types in adherence and biofilm formation. Virulence. 2013;4(2):129–138. doi: 10.4161/viru.22974.
  • Boddicker JD, Anderson RA, Jagnow J, et al. Signature-tagged mutagenesis of Klebsiella pneumoniae to identify genes that influence biofilm formation on extracellular matrix material. Infect Immun. 2006;74(8):4590–4597. doi: 10.1128/IAI.00129-06.
  • Balestrino D, Haagensen JA, Rich C, et al. Characterization of type 2 quorum sensing in Klebsiella pneumoniae and relationship with biofilm formation. J Bacteriol. 2005;187(8):2870–2880. doi: 10.1128/JB.187.8.2870-2880.2005.
  • Chen KM, Chiang MK, Wang M, et al. The role of pgaC in Klebsiella pneumoniae virulence and biofilm formation. Microb Pathog. 2014;77:89–99. doi: 10.1016/j.micpath.2014.11.005.
  • Edward EA, Mohamed NM, Zakaria AS. Whole genome characterization of the high-risk clone ST383 Klebsiella pneumoniae with a simultaneous carriage of blaCTX-M-14 on IncL/M plasmid and blaCTX-M-15 on convergent IncHI1B/IncFIB plasmid from Egypt. Microorganisms. 2022;10(6):1097. doi: 10.3390/microorganisms10061097.
  • Enany S, Zakeer S, Diab AA, et al. Whole genome sequencing of Klebsiella pneumoniae clinical isolates sequence type 627 isolated from Egyptian patients. PLOS One. 2022;17(3):e0265884. doi: 10.1371/journal.pone.0265884.
  • Sherif M, Palmieri M, Mirande C, et al. Whole-genome sequencing of Egyptian multidrug-resistant Klebsiella pneumoniae isolates: a multi-center pilot study. Eur J Clin Microbiol Infect Dis. 2021;40(7):1451–1460. doi: 10.1007/s10096-021-04177-7.
  • Yang Y, Yang Y, Ahmed M, et al. Carriage of distinct blaKPC-2 and blaOXA-48 plasmids in a single ST11 hypervirulent Klebsiella pneumoniae isolate in Egypt. BMC Genomics. 2022;23(1):20. doi: 10.1186/s12864-021-08214-9.
  • Gerald CJ, Marmion Barrie P, Robert I, et al. Mackie & McCartney practical medical microbiology. London: Churchill Livingstone; 1996.
  • CLSI. Performance standards for antimicrobial susceptibility testing. CLSI supplement M100. 30th ed. Wayne (PA): Clinical and Laboratory Standards Institute; 2020.
  • Eucast. Breakpoint tables for interpretation of MICs and zone diameters, version 11.0 [Online]; 2021 [cited 2021 May 1]. Available from: http://www.eucast.org
  • O'toole GA. Microtiter dish biofilm formation assay. J Vis Exp. 2011;(47):2437. doi: 10.3791/2437.
  • Vuotto C, Longo F, Pascolini C, et al. Biofilm formation and antibiotic resistance in Klebsiella pneumoniae urinary strains. J Appl Microbiol. 2017;123(4):1003–1018. doi: 10.1111/jam.13533.
  • Hamed SM, Aboshanab KMA, El-Mahallawy HA, et al. Plasmid-mediated quinolone resistance in Gram-negative pathogens isolated from cancer patients in Egypt. Microb Drug Resist. 2018;24(9):1316–1325. doi: 10.1089/mdr.2017.0354.
  • Fritsche TR, Castanheira M, Miller GH, et al. Detection of methyltransferases conferring high-level resistance to aminoglycosides in Enterobacteriaceae from Europe, North America, and Latin America. Antimicrob Agents Chemother. 2008;52(5):1843–1845. doi: 10.1128/AAC.01477-07.
  • Poirel L, Walsh TR, Cuvillier V, et al. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70(1):119–123. doi: 10.1016/j.diagmicrobio.2010.12.002.
  • Poirel L, Dortet L, Bernabeu S, et al. Genetic features of blaNDM-1-positive Enterobacteriaceae. Antimicrob Agents Chemother. 2011;55(11):5403–5407. doi: 10.1128/AAC.00585-11.
  • Edelstein M, Pimkin M, Palagin I, et al. Prevalence and molecular epidemiology of CTX-M extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob Agents Chemother. 2003;47(12):3724–3732. doi: 10.1128/AAC.47.12.3724-3732.2003.
  • Wasfi R, Elkhatib WF, Ashour HM. Molecular typing and virulence analysis of multidrug resistant Klebsiella pneumoniae clinical isolates recovered from Egyptian hospitals. Sci Rep. 2016;6(1):38929. doi: 10.1038/srep38929.
  • Andrews S. FastQC: a quality control tool for high throughput sequence data [Online]; 2010. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc
  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170.
  • Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–477. doi: 10.1089/cmb.2012.0021.
  • Gurevich A, Saveliev V, Vyahhi N, et al. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29(8):1072–1075. doi: 10.1093/bioinformatics/btt086.
  • Tatusova T, Dicuccio M, Badretdin A, et al. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res. 2016;44(14):6614–6624. doi: 10.1093/nar/gkw569.
  • Carattoli A, Zankari E, Garcia-Fernandez A, et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58(7):3895–3903. doi: 10.1128/AAC.02412-14.
  • Arredondo-Alonso S, Rogers MRC, Braat JC, et al. Mlplasmids: a user-friendly tool to predict plasmid- and chromosome-derived sequences for single species. Microb Genom. 2018;4(11):e000224. doi: 10.1099/mgen.0.000224.
  • Ribeiro-Goncalves B, Francisco AP, Vaz C, et al. PHYLOViZ online: web-based tool for visualization, phylogenetic inference, analysis and sharing of minimum spanning trees. Nucleic Acids Res. 2016;44(W1):W246–W251. doi: 10.1093/nar/gkw359.
  • Wyres KL, Cahill SM, Holt KE, et al. Identification of Acinetobacter baumannii loci for capsular polysaccharide (KL) and lipooligosaccharide outer core (OCL) synthesis in genome assemblies using curated reference databases compatible with kaptive. Microb Genom. 2020;6(3):e000339. doi: 10.1099/mgen.0.000339.
  • Wattam AR, Davis JJ, Assaf R, et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res. 2017;45(D1):D535–D542. doi: 10.1093/nar/gkw1017.
  • Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44(W1):W242–W245. doi: 10.1093/nar/gkw290.
  • Alcock BP, Raphenya AR, Lau TTY, et al. CARD 2020: antibiotic resistome surveillance with the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2020;48(D1):D517–D525. doi: 10.1093/nar/gkz935.
  • Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59–60. doi: 10.1038/nmeth.3176.
  • Pal C, Bengtsson-Palme J, Rensing C, et al. BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Res. 2014;42(Database issue):D737–D743. doi: 10.1093/nar/gkt1252.
  • Liu B, Zheng D, Jin Q, et al. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019;47(D1):D687–D692. doi: 10.1093/nar/gky1080.
  • Arndt D, Grant JR, Marcu A, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44(W1):W16–W21. doi: 10.1093/nar/gkw387.
  • Couvin D, Bernheim A, Toffano-Nioche C, et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018;46(W1):W246–W251. doi: 10.1093/nar/gky425.
  • Page AJ, Cummins CA, Hunt M, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31(22):3691–3693. doi: 10.1093/bioinformatics/btv421.
  • Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–2069. doi: 10.1093/bioinformatics/btu153.
  • Galardini M. Roary plots [Online]; 2015. Available from: https://github.com/sanger-pathogens/Roary/tree/master/contrib/roary_plots
  • Kanehisa M, Sato Y. KEGG mapper for inferring cellular functions from protein sequences. Protein Sci. 2020;29(1):28–35. doi: 10.1002/pro.3711.
  • Harding CR, Schroeder GN, Collins JW, et al. Use of Galleria mellonella as a model organism to study Legionella pneumophila infection. J Vis Exp. 2013;(81):e50964. doi: 10.3791/50964.
  • Ragheb SM, Tawfick MM, El-Kholy AA, et al. Phenotypic and genotypic features of Klebsiella pneumoniae harboring carbapenemases in Egypt: OXA-48-like carbapenemases as an investigated model. Antibiotics. 2020;9(12):852. doi: 10.3390/antibiotics9120852.
  • Ahmed HA, Ibrahim EHS, Abdelhaliem E, et al. Biotyping, virulotyping and biofilm formation ability of ESBL-Klebsiella pneumoniae isolates from nosocomial infections. J Appl Microbiol. 2022;132(6):4555–4568. doi: 10.1111/jam.15563.
  • El-Mahdy R, El-Kannishy G, Salama H. Hypervirulent Klebsiella pneumoniae as a hospital-acquired pathogen in the intensive care unit in Mansoura, Egypt. Germs. 2018;8(3):140–146. doi: 10.18683/germs.2018.1141.
  • Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin Microbiol Infect. 2012;18(3):268–281. doi: 10.1111/j.1469-0691.2011.03570.x.
  • Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother. 2012;67(7):1597–1606. doi: 10.1093/jac/dks121.
  • Osama D, El-Mahallawy H, Mansour MT, et al. Molecular characterization of carbapenemase-producing Klebsiella pneumoniae isolated from Egyptian pediatric cancer patients including a strain with a rare gene-combination of beta-lactamases. Infect Drug Resist. 2021;14:335–348. doi: 10.2147/IDR.S284455.
  • Zowawi HM, Sartor AL, Balkhy HH, et al. (2014). Molecular characterisation of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in the countries of the Gulf Cooperation Council: dominance of OXA-48 and NDM producers. Antimicrob Agents Chemother. 58:3085–3090. doi: 10.1128/AAC.02050-13.
  • Aqel AA, Giakkoupi P, Alzoubi H, et al. Detection of OXA-48-like and NDM carbapenemases producing Klebsiella pneumoniae in Jordan: a pilot study. J Infect Public Health. 2017;10(2):150–155. doi: 10.1016/j.jiph.2016.02.002.
  • Solgi H, Badmasti F, Giske CG, et al. Molecular epidemiology of NDM-1- and OXA-48-producing Klebsiella pneumoniae in an Iranian hospital: clonal dissemination of ST11 and ST893. J Antimicrob Chemother. 2018;73(6):1517–1524. doi: 10.1093/jac/dky081.
  • Zaman TU, Alrodayyan M, Albladi M, et al. Clonal diversity and genetic profiling of antibiotic resistance among multidrug/carbapenem-resistant Klebsiella pneumoniae isolates from a tertiary care hospital in Saudi Arabia. BMC Infect Dis. 2018;18(1):205. doi: 10.1186/s12879-018-3114-9.
  • Abbasi E, Ghaznavi-Rad E. High frequency of NDM-1 and OXA-48 carbapenemase genes among Klebsiella pneumoniae isolates in Central Iran. BMC Microbiol. 2023;23(1):98. doi: 10.1186/s12866-023-02840-x.
  • Alsharapy SA, Gharout-Sait A, Muggeo A, et al. Characterization of carbapenem-resistant Enterobacteriaceae clinical isolates in Al Thawra University Hospital, Sana’a, Yemen. Microb Drug Resist. 2020;26(3):211–217. doi: 10.1089/mdr.2018.0443.
  • Hassuna NA, Abdelaziz RA, Zakaria A, et al. Extensively-drug resistant Klebsiella pneumoniae recovered from neonatal sepsis cases from a major NICU in Egypt. Front Microbiol. 2020;11:1375. doi: 10.3389/fmicb.2020.01375.
  • Catalan-Najera JC, Garza-Ramos U, Barrios-Camacho H. Hypervirulence and hypermucoviscosity: two different but complementary Klebsiella spp. phenotypes? Virulence. 2017;8(7):1111–1123. doi: 10.1080/21505594.2017.1317412.
  • Hao Z, Duan J, Liu L, et al. Prevalence of community-acquired, hypervirulent Klebsiella pneumoniae isolates in Wenzhou, China. Microb Drug Resist. 2020;26(1):21–27. doi: 10.1089/mdr.2019.0096.
  • Li W, Sun G, Yu Y, et al. Increasing occurrence of antimicrobial-resistant hypervirulent (hypermucoviscous) Klebsiella pneumoniae isolates in China. Clin Infect Dis. 2014;58(2):225–232. doi: 10.1093/cid/cit675.
  • Rastegar S, Moradi M, Kalantar-Neyestanaki D, et al. Virulence factors, capsular serotypes and antimicrobial resistance of hypervirulent Klebsiella pneumoniae and classical Klebsiella pneumoniae in southeast Iran. Infect Chemother. 2019. doi: 10.3947/ic.2019.0027.
  • Ye M, Tu J, Jiang J, et al. Clinical and genomic analysis of liver abscess-causing Klebsiella pneumoniae identifies new liver abscess-associated virulence genes. Front Cell Infect Microbiol. 2016;6:165. doi: 10.3389/fcimb.2016.00165.
  • Zhang R, Lin D, Chan EW, et al. Emergence of carbapenem-resistant serotype K1 hypervirulent Klebsiella pneumoniae strains in China. Antimicrob Agents Chemother. 2016a;60(1):709–711. doi: 10.1128/AAC.02173-15.
  • Fu L, Huang M, Zhang X, et al. Frequency of virulence factors in high biofilm formation blaKPC-2 producing Klebsiella pneumoniae strains from hospitals. Microb Pathog. 2018;116:168–172. doi: 10.1016/j.micpath.2018.01.030.
  • Liu C, Yang J, Ge Q, et al. Mechanical properties improvement of thick multi-pass weld by layered ultrasonic impact treatment. Sci Technol Weld Join. 2018;23(2):95–104. doi: 10.1080/13621718.2017.1327201.
  • Abdelwahab R, Alhammadi MM, Hassan EA, et al. Antimicrobial resistance and comparative genome analysis of Klebsiella pneumoniae strains isolated in Egypt. Microorganisms. 2021;9(9):1880. doi: 10.3390/microorganisms9091880.
  • Gharout-Sait A, Alsharapy SA, Brasme L, et al. Enterobacteriaceae isolates carrying the New Delhi metallo-beta-lactamase gene in Yemen. J Med Microbiol. 2014;63(Pt 10):1316–1323. doi: 10.1099/jmm.0.073767-0.
  • Khdary HN, Almalki A, Alkhdiri MH Jr., et al. Investigation on the genetic signatures of antibiotic resistance in multi-drug-resistant Klebsiella pneumoniae isolates from National Guard Hospital, Riyadh. Cureus. 2020;12(11):e11288. doi: 10.7759/cureus.11288.
  • Zafer MM, El-Mahallawy HA, Abdulhak A, et al. Emergence of colistin resistance in multidrug-resistant Klebsiella pneumoniae and Escherichia coli strains isolated from cancer patients. Ann Clin Microbiol Antimicrob. 2019;18(1):40. doi: 10.1186/s12941-019-0339-4.
  • Elmahallawy H, Zafer MM, Al-Agamy M, et al. Dissemination of ST101 blaOXA-48 producing Klebsiella pneumoniae at tertiary care setting. J Infect Dev Ctries. 2018;12(6):422–428. doi: 10.3855/jidc.9789.
  • Gamal D, Fernandez-Martinez M, Salem D, et al. Carbapenem-resistant Klebsiella pneumoniae isolates from Egypt containing blaNDM-1 on IncR plasmids and its association with rmtF. Int J Infect Dis. 2016;43:17–20. doi: 10.1016/j.ijid.2015.12.003.
  • Piccirilli A, Cherubini S, Azzini AM, et al. Whole-genome sequencing (WGS) of carbapenem-resistant K. pneumoniae isolated in long-term care facilities in the Northern Italian region. Microorganisms. 2021;9(9):1985. doi: 10.3390/microorganisms9091985.
  • Lewis JM, Mphasa M, Banda R, et al. Genomic and antigenic diversity of colonizing Klebsiella pneumoniae isolates mirrors that of invasive isolates in Blantyre, Malawi. Microb Genom. 2022;8(3):000778. doi: 10.1099/mgen.0.000778.
  • He J, Du X, Zeng X, et al. Phenotypic and genotypic characterization of a hypervirulent carbapenem-resistant Klebsiella pneumoniae ST17-KL38 clinical isolate harboring the carbapenemase IMP-4. Microbiol Spectr. 2022;10(2):e0213421. doi: 10.1128/spectrum.02134-21.
  • Lee AHY, Porto WF, De Faria C Jr., et al. Genomic insights into the diversity, virulence and resistance of Klebsiella pneumoniae extensively drug resistant clinical isolates. Microb Genom. 2021;7(8):000613. doi: 10.1099/mgen.0.000613.
  • Poirel L, Lartigue MF, Decousser JW, et al. ISEcp1B-mediated transposition of blaCTX-M in Escherichia coli. Antimicrob Agents Chemother. 2005;49(1):447–450. doi: 10.1128/AAC.49.1.447-450.2005.
  • Agyekum A, Fajardo-Lubian A, Ansong D, et al. blaCTX-M-15 carried by IncF-type plasmids is the dominant ESBL gene in Escherichia coli and Klebsiella pneumoniae at a hospital in Ghana. Diagn Microbiol Infect Dis. 2016;84(4):328–333. doi: 10.1016/j.diagmicrobio.2015.12.010.
  • Slama KB, Jouini A, Sallem RB, et al. Prevalence of broad-spectrum cephalosporin-resistant Escherichia coli isolates in food samples in Tunisia, and characterization of integrons and antimicrobial resistance mechanisms implicated. Int J Food Microbiol. 2010;137(2–3):281–286. doi: 10.1016/j.ijfoodmicro.2009.12.003.
  • Sun Y, Zeng Z, Chen S, et al. High prevalence of bla(CTX-M) extended-spectrum beta-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clin Microbiol Infect. 2010;16(9):1475–1481. doi: 10.1111/j.1469-0691.2010.03127.x.
  • Tian SF, Chu YZ, Chen BY, et al. ISEcp1 element in association with bla(CTX-M) genes of E. coli that produce extended-spectrum beta-lactamase among the elderly in community settings. Enferm Infecc Microbiol Clin. 2011;29(10):731–734. doi: 10.1016/j.eimc.2011.07.011.
  • Van Aartsen JJ, Moore CE, Parry CM, et al. Epidemiology of paediatric gastrointestinal colonisation by extended spectrum cephalosporin-resistant Escherichia coli and Klebsiella pneumoniae isolates in North-west Cambodia. BMC Microbiol. 2019;19(1):59. doi: 10.1186/s12866-019-1431-9.
  • Dimude JU, Amyes SG. Molecular characterisation and diversity in Enterobacter cloacae from Edinburgh and Egypt carrying bla(CTX-M-14) and bla(VIM-4) beta-lactamase genes. Int J Antimicrob Agents. 2013;41(6):574–577. doi: 10.1016/j.ijantimicag.2013.02.012.
  • Harada S, Ishii Y, Saga T, et al. Chromosomal integration and location on IncT plasmids of the blaCTX-M-2 gene in Proteus mirabilis clinical isolates. Antimicrob Agents Chemother. 2012;56(2):1093–1096. doi: 10.1128/AAC.00258-11.
  • Wang Y, Song C, Duan G, et al. Transposition of ISEcp1 modulates blaCTX-M-55-mediated Shigella flexneri resistance to cefalothin. Int J Antimicrob Agents. 2013;42(6):507–512. doi: 10.1016/j.ijantimicag.2013.08.009.
  • Karim A, Poirel L, Nagarajan S, et al. Plasmid-mediated extended-spectrum beta-lactamase (CTX-M-3 like) from India and gene association with insertion sequence ISEcp1. FEMS Microbiol Lett. 2001;201(2):237–241. doi: 10.1111/j.1574-6968.2001.tb10762.x.
  • Poirel L, Decousser JW, Nordmann P. Insertion sequence ISEcp1B is involved in expression and mobilization of a bla(CTX-M) beta-lactamase gene. Antimicrob Agents Chemother. 2003;47(9):2938–2945. doi: 10.1128/AAC.47.9.2938-2945.2003.
  • Huang W, Wang G, Sebra R, et al. Emergence and evolution of multidrug-resistant Klebsiella pneumoniae with both blaKPC and blaCTX-M integrated in the chromosome. Antimicrob Agents Chemother. 2017;61(7):e00076-17. doi: 10.1128/AAC.00076-17.
  • Kieffer N, Poirel L, Mueller L, et al. ISEcp1-mediated transposition leads to fosfomycin and broad-spectrum cephalosporin resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2020;64(5):e00150-20. doi: 10.1128/AAC.00150-20.
  • Shawa M, Furuta Y, Mulenga G, et al. Novel chromosomal insertions of ISEcp1-blaCTX-M-15 and diverse antimicrobial resistance genes in Zambian clinical isolates of Enterobacter cloacae and Escherichia coli. Antimicrob Resist Infect Control. 2021;10(1):79. doi: 10.1186/s13756-021-00941-8.
  • Ferrieres L, Clarke DJ. The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface. Mol Microbiol. 2003;50(5):1665–1682. doi: 10.1046/j.1365-2958.2003.03815.x.
  • Latasa C, García B, Echeverz M, et al. Salmonella biofilm development depends on the phosphorylation status of RcsB. J Bacteriol. 2012;194(14):3708–3722. doi: 10.1128/JB.00361-12.
  • Hamed SM, Elkhatib WF, El-Mahallawy HA, et al. Multiple mechanisms contributing to ciprofloxacin resistance among Gram negative bacteria causing infections to cancer patients. Sci Rep. 2018;8(1):12268. doi: 10.1038/s41598-018-30756-4.
  • Vats P, Kaur UJ, Rishi P. Heavy metal-induced selection and proliferation of antibiotic resistance: a review. J Appl Microbiol. 2022;132(6):4058–4076. doi: 10.1111/jam.15492.
  • Perrin C, Briandet R, Jubelin G, et al. Nickel promotes biofilm formation by Escherichia coli K-12 strains that produce curli. Appl Environ Microbiol. 2009;75(6):1723–1733. doi: 10.1128/AEM.02171-08.
  • Wu X, Santos RR, Fink-Gremmels J. Cadmium modulates biofilm formation by Staphylococcus epidermidis. Int J Environ Res Public Health. 2015;12(3):2878–2894. doi: 10.3390/ijerph120302878.
  • Wu MC, Lin TL, Hsieh PF, et al. Isolation of genes involved in biofilm formation of a Klebsiella pneumoniae strain causing pyogenic liver abscess. PLOS One. 2011;6(8):e23500. doi: 10.1371/journal.pone.0023500.
  • Yang X, Dong N, Chan EW, et al. Carbapenem resistance-encoding and virulence-encoding conjugative plasmids in Klebsiella pneumoniae. Trends Microbiol. 2021;29(1):65–83. doi: 10.1016/j.tim.2020.04.012.
  • Townsend SM, Kramer NE, Edwards R, et al. Salmonella enterica serovar Typhi possesses a unique repertoire of fimbrial gene sequences. Infect Immun. 2001;69(5):2894–2901. doi: 10.1128/IAI.69.5.2894-2901.2001.
  • De Araujo C, Balestrino D, Roth L, et al. Quorum sensing affects biofilm formation through lipopolysaccharide synthesis in Klebsiella pneumoniae. Res Microbiol. 2010;161(7):595–603. doi: 10.1016/j.resmic.2010.05.014.
  • Lin TH, Chen Y, Kuo JT, et al. Phosphorylated OmpR is required for type 3 fimbriae expression in Klebsiella pneumoniae under hypertonic conditions. Front Microbiol. 2018;9:2405. doi: 10.3389/fmicb.2018.02405.
  • Freeman ZN, Dorus S, Waterfield NR. The KdpD/KdpE two-component system: integrating K(+) homeostasis and virulence. PLoS Pathog. 2013;9(3):e1003201. doi: 10.1371/journal.ppat.1003201.
  • Insua JL, Llobet E, Moranta D, et al. Modeling Klebsiella pneumoniae pathogenesis by infection of the wax moth Galleria mellonella. Infect Immun. 2013;81(10):3552–3565. doi: 10.1128/IAI.00391-13.
  • Russo TA, Macdonald U. The Galleria mellonella infection model does not accurately differentiate between hypervirulent and classical Klebsiella pneumoniae. mSphere. 2020;5(1):e00850-19. doi: 10.1128/mSphere.00850-19.
  • Palmer KL, Gilmore MS. Multidrug-resistant enterococci lack CRISPR–cas. mBio. 2010;1(4):e00227-10. doi: 10.1128/mBio.00227-10.
  • Zheng PX, Chiang-Ni C, Wang SY, et al. Arrangement and number of clustered regularly interspaced short palindromic repeat spacers are associated with erythromycin susceptibility in emm12, emm75 and emm92 of group A streptococcus. Clin Microbiol Infect. 2014;20(6):516–523. doi: 10.1111/1469-0691.12379.
  • Mackow NA, Shen J, Adnan M, et al. CRISPR–Cas influences the acquisition of antibiotic resistance in Klebsiella pneumoniae. PLOS One. 2019;14(11):e0225131. doi: 10.1371/journal.pone.0225131.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.