174
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Implications of migratory and exotic birds and the mosquito community on West Nile virus transmission

, , , , , , , , , , , , & show all
Pages 206-219 | Received 01 Sep 2023, Accepted 23 Nov 2023, Published online: 31 Dec 2023

References

  • WHO. Global vector control response: progress in planning and implementation 2017. https://www.who.int/publications/i/item/9789240007987. (accessed July 26, 2023).
  • WHO. Vector-borne diseases 2020. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases. (accessed July 26, 2023).
  • Franklinos LHV, Jones KE, Redding DW, et al. The effect of global change on mosquito-borne disease. Lancet Infect Dis. 2019;19(9):e302–12–e312. doi: 10.1016/S1473-3099(19)30161-6.
  • Wilkerson RC, Linton YM, Strickman D. Mosquitoes of the world. (Vol. 1 ans Vol. 2). Baltimore, MD: Johns Hopkins University Press.; 2021.
  • Chancey C, Grinev A, Volkova E, et al. The global ecology and epidemiology of West Nile virus. Biomed Res Int. 2015;2015:376230–20. doi: 10.1155/2015/376230.
  • Engler O, Savini G, Papa A, et al. European surveillance for West Nile virus in mosquito populations. Int J Environ Res Public Health. 2013;10(10):4869–4895. doi: 10.3390/IJERPH10104869.
  • Ferraguti M, De la Puente JM, Figuerola J. Ecological effects on the dynamics of West Nile virus and avian plasmodium: the importance of mosquito communities and landscape. Viruses. 2021;13(7):1208. doi: 10.3390/V13071208.
  • van der Meulen KM, Pensaert MB, Nauwynck HJ. West Nile virus in the vertebrate world. Arch Virol. 2005;150(4):637–657. doi: 10.1007/s00705-004-0463-z.
  • Petersen LR, Brault AC, Nasci RS. West Nile virus: review of the literature. Jama. 2013;310(3):308–315. doi: 10.1001/JAMA.2013.8042.
  • David S, Abraham AM. Epidemiological and clinical aspects on West Nile virus, a globally emerging pathogen. Infect Dis. 2016;48(8):571–586. doi: 10.3109/23744235.2016.1164890.
  • Figuerola J, Jiménez-Clavero MÁ, Ruíz-López MJ, et al. A one health view of the West Nile virus outbreak in Andalusia (Spain) in 2020. Emerg Microbes Infect. 2022;11(1):2570–2578. doi: 10.1080/22221751.2022.2134055.
  • Magallanes S, Llorente F, Ruiz-López MJ, et al. Long-term serological surveillance for West Nile and usutu virus in horses in South-West Spain. One Health. 2023;17:100578. doi: 10.1016/j.onehlt.2023.100578.
  • Rodríguez-Alarcón LGSM, Fernández-Martínez B, Moros MJS, et al. Unprecedented increase of West Nile virus neuroinvasive disease, Spain, summer 2020. Eurosurveillance. 2021;26:2002010. doi: 10.2807/1560-7917.ES.2021.26.19.2002010/CITE/PLAINTEXT.
  • Ferraguti M, La Puente JD, Soriguer R, et al. West Nile virus-neutralizing antibodies in wild birds from Southern Spain. Epidemiol Infect. 2016;144(9):1907–1911. doi: 10.1017/S0950268816000133.
  • Bravo-Barriga D, Aguilera-Sepúlveda P, Guerrero-Carvajal F, et al. West Nile and usutu virus infections in wild birds admitted to rehabilitation centres in Extremadura, Western Spain, 2017-2019. Vet Microbiol. 2021;255:109020. doi: 10.1016/J.VETMIC.2021.109020.
  • Marzal A, Ferraguti M, Muriel J, et al. Circulation of zoonotic flaviviruses in wild passerine birds in Western Spain. Vet Microbiol. 2022;268:109399. doi: 10.1016/J.VETMIC.2022.109399.
  • Guerrero-Carvajal F, Bravo-Barriga D, Martín-Cuervo M, et al. Serological evidence of co-circulation of West Nile and usutu viruses in equids from Western Spain. Transbound Emerg Dis. 2021;68(3):1432–1444. doi: 10.1111/TBED.13810.
  • López-Ruiz N, Montaño-Remacha M del C, Durán-Pla E, et al. West Nile virus outbreak in humans and epidemiological surveillance, west Andalusia, Spain, 2016. Euro Surveill. 2018;23(14):17–00261. doi: 10.2807/1560-7917.ES.2018.23.14.17-00261.
  • Macias A, Martín P, Pérez-Olmeda M, et al. West Nile virus emergence in humans in Extremadura, Spain 2020. Front Cell Infect Microbiol. 2023;13:1155867. doi: 10.3389/FCIMB.2023.1155867.
  • Vázquez A, Ruiz S, Herrero L, et al. West Nile and usutu viruses in mosquitoes in Spain, 2008–2009. Am J Trop Med Hyg. 2011;85(1):178–181. doi: 10.4269/ajtmh.2011.11-0042.
  • Ruiz-López MJ, Muñoz-Chimeno M, Figuerola J, et al. Genomic analysis of West Nile virus lineage 1 detected in mosquitoes during the 2020–2021 outbreaks in Andalusia, Spain. Viruses. 2023;15(2):266. doi: 10.3390/v15020266.
  • Kilpatrick AM, Daszak P, Jones MJ, et al. Host heterogeneity dominates West Nile virus transmission. Proc Biol Sci. 2006;273(1599):2327–2333. doi: 10.1098/RSPB.2006.3575.
  • Pérez-Ramírez E, Llorente F, Jiménez-Clavero MÁ. Experimental infections of wild birds with West Nile virus. Viruses. 2014;6(2):752–781. doi: 10.3390/V6020752.
  • Cadotte MW, Jonathan Davies T, Regetz J, et al. Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecol Lett. 2010;13(1):96–105. doi: 10.1111/j.1461-0248.2009.01405.x.
  • Ferraguti M, Dimas Martins A, Artzy-Randrup Y. Quantifying the invasion risk of West Nile virus: insights from a multi-vector and multi-host SEIR model. One Health. 2023;17:100638. doi: 10.1016/j.onehlt.2023.100638.
  • Martínez-De La Puente J, Ferraguti M, Ruiz S, et al. Mosquito community influences West Nile virus seroprevalence in wild birds: implications for the risk of spillover into human populations. Sci Rep. 2018;8(1):2599. doi: 10.1038/s41598-018-20825-z.
  • Roche B, Rohani P, Dobson AP, et al. The impact of community organization on vector-borne pathogens. Am Nat. 2013;181(1):1–11. doi: 10.1086/668591.
  • Chaves LF, Hamer GL, Walker ED, et al. Climatic variability and landscape heterogeneity impact urban mosquito diversity and vector abundance and infection. Ecosphere. 2011;2(6):art70. doi: 10.1890/ES11-00088.1.
  • Walther G-R. Community and ecosystem responses to recent climate change. Philos Trans R Soc Lond B Biol Sci. 2010;365(1549):2019–2024. doi: 10.1098/rstb.2010.0021.
  • Mancuso E, Cecere JG, Iapaolo F, et al. West Nile and usutu virus introduction via migratory birds: a retrospective analysis in Italy. Viruses. 2022;14(2):416. doi: 10.3390/V14020416.
  • López-Calderón C, Hobson KA, Marzal A, et al. Wintering areas predict age‐related breeding phenology in a migratory passerine bird. J Avian Biol. 2017;48(5):631–639. doi: 10.1111/jav.01070.
  • López-Calderón C, Magallanes S, Marzal A, et al. The migration system of barn swallows hirundo rustica breeding in southwestern Spain and wintering across West Africa. 2021;68:335–54. doi: 10.13157/ARLA.68.2.2021.RA2.
  • Szép T, Liechti F, Nagy K, et al. Discovering the migration and non-breeding areas of sand martins and house martins breeding in the Pannonian basin (Central-Eastern Europe). J Avian Biol. 2017;48(1):114–122. doi: 10.1111/jav.01339.
  • Muriel J, Garcia-Longoria L, Magallanes S, et al. Avian malaria, haematocrit, and body condition in invasive wetland passerines settled in southwestern Spain. Avian Res. 2023;14:100081. doi: 10.1016/j.avrs.2023.100081.
  • Torchin ME, Lafferty KD, Dobson AP, et al. Introduced species and their missing parasites. Nature. 2003; 421(6923):628–630. doi: 10.1038/nature01346.
  • Keane RM, Crawley MJ. Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol. 2002;17(4):164–170. doi: 10.1016/S0169-5347(02)02499-0.
  • Blossey B, Notzold R. Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J Ecol. 1995;83(5):887. doi: 10.2307/2261425.
  • López G, Jiménez-Clavero MÁ, Tejedor CG, et al. Prevalence of West Nile virus neutralizing antibodies in Spain is related to the behavior of migratory birds. Vector Borne Zoonotic Dis. 2008;8(5):615–621. doi: 10.1089/VBZ.2007.0200.
  • Morand S, Bordes F, Chen H-W, et al. Global parasite and Rattus rodent invasions: the consequences for rodent-borne diseases. Integr Zool. 2015;10(5):409–423. doi: 10.1111/1749-4877.12143.
  • Magallanes S, Møller AP, Luján-Vega C, et al. Exploring the adjustment to parasite pressure hypothesis : differences in uropygial gland volume and haemosporidian infection in palearctic and neotropical birds. Curr Zool. 2021;67(2):147–156. doi: 10.1093/cz/zoaa037.
  • Woolhouse MEJ, Taylor LH, Haydon DT. Population biology of multihost pathogens. Science. 2001;292(5519):1109–1112. doi: 10.1126/SCIENCE.1059026.
  • Sánchez-Guzmán JM, Morán R, Masero JA, et al. Identifying new buffer areas for conserving waterbirds in the Mediterranean basin: the importance of the rice fields in Extremadura, Spain. Biodivers Conserv. 2007;16(12):3333–3344. doi: 10.1007/S10531-006-9018-9/METRICS.
  • Sotelo E, Fernandez-Pinero J, Llorente F, et al. Characterization of West Nile virus isolates from Spain: new insights into the distinct West Nile virus eco-epidemiology in the Western mediterranean. Virology. 2009;395(2):289–297. doi: 10.1016/J.VIROL.2009.09.013.
  • Beck HE, Zimmermann NE, McVicar TR, et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data. 2018;5(1):180214. doi: 10.1038/sdata.2018.214.
  • Ferraguti M, Martínez-de la Puente J, Muñoz J, et al. Avian plasmodium in culex and ochlerotatus mosquitoes from Southern Spain: effects of season and host-feeding source on parasite dynamics. PLOS One. 2013;8(6):e66237. doi: 10.1371/JOURNAL.PONE.0066237.
  • Lars S, Killian M, Dan Z, et al. Guía de aves : España, europa y región mediterránea. 2010.
  • Labocha MK, Hayes JP. Morphometric indices of body condition in birds: a review. J Ornithol. 2012;153(1):1–22. doi: 10.1007/s10336-011-0706-1.
  • Eiras AE, Costa LH, Batista-Pereira LG, et al. Semi-field assessment of the gravid aedes trap (GAT) with the aim of controlling aedes (stegomyia) aegypti populations. PLOS One. 2021;16(4):e0250893. doi: 10.1371/JOURNAL.PONE.0250893.
  • Becker N, Petrić D, Zgomba M, Boase C, Madon MB, Dahl C, et al. Mosquitoes. 2020. doi: 10.1007/978-3-030-11623-1.
  • Bravo-Barriga D, Ferraguti M, Magallanes S, et al. Identification of usutu virus Africa 3 lineage in a survey of mosquitoes and birds from urban areas of Western Spain. Transbound Emerg Dis. 2023;2023:1–10. doi: 10.1155/2023/6893677.
  • Sotelo E, Llorente F, Rebollo B, et al. Development and evaluation of a new epitope-blocking ELISA for universal detection of antibodies to West Nile virus. J Virol Methods. 2011;174(1–2):35–41. doi: 10.1016/J.JVIROMET.2011.03.015.
  • Llorente F, García-Irazábal A, Pérez-Ramírez E, et al. Influence of flavivirus co-circulation in serological diagnostics and surveillance: a model of study using West Nile, usutu and bagaza viruses. Transbound Emerg Dis. 2019;66(5):2100–2106. doi: 10.1111/TBED.13262.
  • Calisher CH, Karabatsos N, Dalrymple JM, et al. Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. J Gen Virol. 1989;70(Pt 1)(1):37–43. doi: 10.1099/0022-1317-70-1-37.
  • Jetz W, Thomas GH, Joy JB, et al. The global diversity of birds in space and time. Nature. 2012;491(7424):444–448. doi: 10.1038/nature11631.
  • Rubolini D, Liker A, Garamszegi LZ, et al. Using the BirdTree.org website to obtain robust phylogenies for avian comparative studies: a primer. Curr Zool. 2015;61(6):959–965. doi: 10.1093/CZOOLO/61.6.959.
  • Pearse WD, Purvis A, Cavender-Bares J, et al. Metrics and models of community phylogenetics. In: Garamszegi L, editor, Modern phylogenetic comparative methods and their application in evolutionary biology. Berlin, Heidelberg: Springer; 2014; p. 451–464. doi: 10.1007/978-3-662-43550-2_19.
  • Jovani R, Tella JL. Parasite prevalence and sample size: misconceptions and solutions. Trends Parasitol. 2006;22(5):214–218. doi: 10.1016/J.PT.2006.02.011.
  • Martinet J-P, Bohers C, Vazeille M, et al. Assessing vector competence of mosquitoes from northeastern France to West Nile virus and usutu virus. PLOS Negl Trop Dis. 2023;17(6):e0011144. doi: 10.1371/JOURNAL.PNTD.0011144.
  • Oksanen J. Vegan: ecological diversity. R Project. 2013;368:1–11.
  • Zuur AF, Ieno EN, Elphick CS. A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol. 2010;1(1):3–14. doi: 10.1111/j.2041-210X.2009.00001.x.
  • Rodriguez G. Models for over-dispersed count data generalized linear models. Princeton, NJ: Princeton University; 2001. https://data.princeton.edu/wws509/stata/overdispersion (accessed February 23, 2021).
  • Vidaña B, Busquets N, Napp S, et al. The role of birds of prey in West Nile virus epidemiology. Vaccines. 2020;8(3):1–32. doi: 10.3390/VACCINES8030550.
  • Lauriano A, Rossi A, Galletti G, et al. West Nile and usutu viruses’ surveillance in birds of the province of ferrara, Italy, from 2015 to 2019. Viruses. 2021;13(7):1367. doi: 10.3390/V13071367/S1.
  • Figuerola J, Green AJ. Haematozoan parasites and migratory behaviour in waterfowl. Evol Ecol. 2000;14(2):143–153. doi: 10.1023/A:1011009419264.
  • Mancuso E, Toma L, Pascucci I, et al. Direct and indirect role of migratory birds in spreading CCHFV and WNV: a multidisciplinary study on three stop-over islands in Italy. Pathogens. 2022;11(9):1056. doi: 10.3390/pathogens11091056.
  • La Chapelle M, Ruta M, Dunn JC. Bird species with wider geographical ranges have higher blood parasite diversity but not prevalence across the African-Eurasian flyway. Int J Parasitol. 2023; doi: 10.1016/j.ijpara.2023.06.002.
  • George TL, Harrigan RJ, Lamanna JA, et al. Persistent impacts of West Nile virus on North American bird populations. Proc Natl Acad Sci U S A. 2015;112(46):14290–14294. doi: 10.1073/PNAS.1507747112/SUPPL_FILE/PNAS.1507747112.SFIG04.TIF.
  • Magallanes S, García‐Longoria L, López‐Calderón C, et al. Uropygial gland volume and malaria infection are related to survival in migratory house martins. J Avian Biol. 2017;48(11):1355–1359. doi: 10.1111/jav.01514.
  • Vázquez A, Sánchez-Seco MP, Ruiz S, et al. Putative new lineage of West Nile virus, Spain. Emerg Infect Dis. 2010;16(3):549–552. doi: 10.3201/EID1603.091033.
  • Prenter J, MacNeil C, Dick JTA, et al. Roles of parasites in animal invasions. Trends Ecol Evol. 2004;19(7):385–390. doi: 10.1016/j.tree.2004.05.002.
  • Wood CL, Lafferty KD, DeLeo G, et al. Does biodiversity protect humans against infectious disease? Ecology. 2014;95(4):817–832. doi: 10.1890/13-1041.1.
  • Randolph SE, Dobson ADM. Pangloss revisited: a critique of the dilution effect and the biodiversity-buffers-disease paradigm. Parasitology. 2012;139(7):847–863. doi: 10.1017/S0031182012000200.
  • Ferraguti M, Martínez-De la Puente J, Jiménez–Clavero MÁ, et al. A field test of the dilution effect hypothesis in four avian multi-host pathogens. PLOS Pathog. 2021;17(6):e1009637. doi: 10.1371/JOURNAL.PPAT.1009637.
  • Johnson PTJ, Wood CL, Joseph MB, et al. Habitat heterogeneity drives the host-diversity-begets-parasite-diversity relationship: evidence from experimental and field studies. Ecol Lett. 2016;19(7):752–761. doi: 10.1111/ele.12609.
  • Ferraguti M, Heesterbeek H, Martínez-de la Puente J, et al. The role of different culex mosquito species in the transmission of West Nile virus and avian malaria parasites in mediterranean areas. Transbound Emerg Dis. 2021;68(2):920–930. doi: 10.1111/TBED.13760.
  • Esteves A, Almeida APG, Galão RP, et al. West Nile virus in Southern Portugal, 2004. Vector Borne Zoonotic Dis. 2005;5(4):410–413. doi: 10.1089/VBZ.2005.5.410.
  • Farajollahi A, Fonseca DM, Kramer LD, et al. Bird biting” mosquitoes and human disease: a review of the role of culex pipiens complex mosquitoes in epidemiology. Infect Genet Evol. 2011;11(7):1577–1585. doi: 10.1016/J.MEEGID.2011.08.013.
  • Kampen H, Schuhbauer A, Walther D. Emerging mosquito species in Germany—a synopsis after 6 years of mosquito monitoring (2011–2016). Parasitol Res. 2017;116(12):3253–3263. doi: 10.1007/s00436-017-5619-3.
  • Ribeiro H, da Cunha RH, Pires CA, et al. An annotated checklist of the mosquitoes of continental Portugal. Actas III Congreso Ibérico de Entomologia, Grenada: 1988, p. 233–254.
  • Osório HC, Zé-Zé L, Alves MJ. Host-feeding patterns of Culex pipiens and other potential mosquito vectors (diptera: culicidae) of West Nile virus (flaviviridae) collected in Portugal. J Med Entomol. 2012;49(3):717–721. doi: 10.1603/ME11184.
  • Muñoz J, Ruiz S, Soriguer R, et al. Feeding patterns of potential West Nile virus vectors in South-West Spain. PLoS One. 2012;7(6):e39549. doi: 10.1371/journal.pone.0039549.
  • Becker N, Petric D, Zgomba M, Boase C, Madon M, Dahl C, et al. Mosquitoes: Identification, Ecology and Control. Third Edition. Cham: Springer Nature; 2020.
  • Nikookar SH, Moosa-Kazemi SH, Oshaghi MA, et al. Species composition and diversity of mosquitoes in Neka County, Mazandaran province, Northern Iran. Iran J Arthropod Borne Dis. 2010;4(2):26–34.
  • Mora-Rubio C, Ferraguti M, Magallanes S, et al. Unravelling the mosquito - haemosporidian parasite - bird host network in the Southwestern Iberian Peninsula: insights into malaria infections, mosquito community and feeding preferences. Parasit Vectors. 2023;16(1):395. doi: 10.1186/s13071-023-05964-1.
  • Bedir H, Demirci B, Vatansever Z. Host-feeding patterns of mosquito species in aras valley, Turkey. Jers. 2022;24(3):303–320. doi: 10.51963/jers.v24i3.2222.
  • Brugman VA, Hernández-Triana LM, England ME, et al. Blood-feeding patterns of native mosquitoes and insights into their potential role as pathogen vectors in the thames estuary region of the United Kingdom. Parasites Vectors. 2017;10(1):163. doi: 10.1186/s13071-017-2098-4.
  • Fyodorova MV, Savage HM, Lopatina JV, et al. Evaluation of ptential West Nile virus vectors in Volgograd region, Russia, 2003 (diptera: culicidae): species composition, bloodmeal host utilization, and virus infection rates of mosquitoes. J Med Entomol. 2006;43(3):552–563. doi: 10.1093/jmedent/43.3.552.
  • Martínez-de la Puente J, Díez-Fernández A, Montalvo T, et al. Do invasive mosquito and bird species alter avian malaria parasite transmission? Diversity. 2020;12(3):111. doi: 10.3390/d12030111.
  • González MA, Prosser SW, Hernández-Triana LM, et al. Avian feeding preferences of Culex pipiens and culiseta spp. along an urban-to-wild gradient in Northern Spain. Front Ecol Evol. 2020;8:568835. doi: 10.3389/fevo.2020.568835.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.