381
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Eliminating the HIV tissue reservoir: current strategies and challenges

&
Pages 165-182 | Received 09 Aug 2023, Accepted 16 Dec 2023, Published online: 27 Dec 2023

References

  • Lopez B, Siliciano RF. Analyzing the unperturbed HIV-1 T cell reservoir. Trends Immunol. 2023;44(3):147–149. doi:10.1016/j.it.2023.01.007.
  • Masenga SK, Mweene BC, Luwaya E, et al. HIV-Host cell interactions. Cells. 2023;12(10):1351. doi:10.3390/cells12101351.
  • Li K, Liu B, Ma R, et al. HIV tissue reservoirs: current advances in research. AIDS Patient Care STDs. 2023;37(6):284–296. doi:10.1089/apc.2023.0028.
  • Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. J Clin Epidemiol. 2021;134:178–189. doi:10.1016/j.jclinepi.2021.03.001.
  • Vermeulen M, van Schalkwyk C, Jacobs G, et al. The impact of early antiretroviral treatment (ART) for HIV on the sensitivity of the latest generation of blood screening and point of care assays. Viruses. 2022;14(7):1426. doi:10.3390/v14071426.
  • Guo H, Wang Q, Ghneim K, et al. Multi-omics analyses reveal that HIV-1 alters CD4+ T cell immunometabolism to fuel virus replication. Nat Immunol. 2021;22(4):423–433. doi:10.1038/s41590-021-00898-1.
  • Shiau S, Abrams EJ, Arpadi SM, et al. Early antiretroviral therapy in HIV-infected infants: can it lead to HIV remission? Lancet HIV. 2018;5(5):e250–e258. doi:10.1016/S2352-3018(18)30012-2.
  • Tagarro A, Chan M, Zangari P, et al. Early and highly suppressive antiretroviral therapy are main factors associated with low viral reservoir in European perinatally HIV-infected children. J Acquir Immune Defic Syndr. 2018;79(2):269–276. doi:10.1097/QAI.0000000000001789.
  • McManus M, Mick E, Hudson R, et al. Early combination antiretroviral therapy limits exposure to HIV-1 replication and cell-associated HIV-1 DNA levels in infants. PLoS One. 2016;11(4):e0154391. doi:10.1371/journal.pone.0154391.
  • Naidoo KK, Ndumnego OC, Ismail N, et al. Antigen presenting cells contribute to persistent immune activation despite antiretroviral therapy initiation during hyperacute HIV-1 infection. Front Immunol. 2021;12:738743. doi:10.3389/fimmu.2021.738743.
  • Kroon EDMB, Phanuphak N, Shattock AJ, et al. Acute HIV infection detection and immediate treatment estimated to reduce transmission by 89% among men who have sex with men in bangkok. J Int AIDS Soc. 2017;20(1):21708. doi:10.7448/IAS.20.1.21708.
  • Gutiérrez C, Díaz L, Vallejo A, et al. Intensification of antiretroviral therapy with a CCR5 antagonist in patients with chronic HIV-1 infection: effect on T cells latently infected. PLoS One. 2011;6(12):e27864. doi:10.1371/journal.pone.0027864.
  • Shikuma CM, Wojna V, De Gruttola V, et al. Impact of ART intensification with CCR5 antagonist maraviroc on HIV-associated neurocognitive impairment. AIDS. 2023;37(13):1987–1995. doi:10.1097/QAD.0000000000003650.
  • Rasmussen TA, McMahon JH, Chang JJ, et al. The effect of antiretroviral intensification with dolutegravir on residual virus replication in HIV-infected individuals: a randomised, placebo-controlled, double-blind trial. Lancet HIV. 2018;5(5):e221–e230. doi:10.1016/S2352-3018(18)30040-7.
  • Puertas MC, Gómez-Mora E, Santos JR, et al. Impact of intensification with raltegravir on HIV-1-infected individuals receiving monotherapy with boosted PIs. J Antimicrob Chemother. 2018;73(7):1940–1948. doi:10.1093/jac/dky106.
  • Puertas MC, Massanella M, Llibre JM, et al. Intensification of a raltegravir-based regimen with maraviroc in early HIV-1 infection. AIDS. 2014;28(3):325–334. doi:10.1097/QAD.0000000000000066.
  • Kityo C, Szubert AJ, Siika A, et al. Raltegravir-intensified initial antiretroviral therapy in advanced HIV disease in africa: a randomised controlled trial. PLoS Med. 2018;15(12):e1002706. doi:10.1371/journal.pmed.1002706.
  • Moron-Lopez S, Bernal S, Wong JK, et al. ABX464 decreases the total human immunodeficiency virus (HIV) reservoir and HIV transcription initiation in CD4+ T cells from antiretroviral therapy-Suppressed individuals living with HIV. Clin Infect Dis. 2022;74(11):2044–2049. doi:10.1093/cid/ciab733.
  • Letendre SL, Chen H, McKhann A, et al. Antiretroviral therapy intensification for neurocognitive impairment in HIV. Clin Infect Dis. 2023;77(6):866–874. doi:10.1093/cid/ciad265.
  • Chaillon A, Gianella S, Lada SM, et al. Size, composition, and evolution of HIV DNA populations during early antiretroviral therapy and intensification with maraviroc. J Virol. 2018;92(3):e01589-17. doi:10.1128/JVI.01589-17.
  • Woollard SM, Kanmogne GD. Maraviroc: a review of its use in HIV infection and beyond. Drug Des Devel Ther. 2015;9:5447–5468. doi:10.2147/DDDT.S90580.
  • Kruger K, Grabowski PJ, Zaug AJ, et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena. Cell. 1982;31(1):147–157. doi:10.1016/0092-8674(82)90414-7.
  • Sarver N, Cantin EM, Chang PS, et al. Ribozymes as potential anti-HIV-1 therapeutic agents. Science. 1990;247(4947):1222–1225. doi:10.1126/science.2107573.
  • Ojwang JO, Hampel A, Looney DJ, et al. Inhibition of human immunodeficiency virus type 1 expression by a hairpin ribozyme. Proc Natl Acad Sci U S A. 1992;89(22):10802–10806. doi:10.1073/pnas.89.22.10802.
  • Yu M, Poeschla E, Yamada O, et al. In vitro and in vivo characterization of a second functional hairpin ribozyme against HIV-1. Virology. 1995;206(1):381–386. doi:10.1016/s0042-6822(95)80053-0.
  • Zhang X, Iwatani Y, Shimayama T, et al. Phosphorothioate hammerhead ribozymes targeting a conserved sequence in the V3 loop region inhibit HIV-1 entry. Antisense Nucleic Acid Drug Dev. 1998;8(6):441–450. doi:10.1089/oli.1.1998.8.441.
  • Yamada O, Kraus G, Luznik L, et al. A chimeric human immunodeficiency virus type 1 (HIV-1) minimal rev response element-ribozyme molecule exhibits dual antiviral function and inhibits cell-cell transmission of HIV-1. J Virol. 1996;70(3):1596–1601. doi:10.1128/JVI.70.3.1596-1601.1996.
  • Wong-Staal F, Poeschla EM, Looney DJ. A controlled, phase 1 clinical trial to evaluate the safety and effects in HIV-1 infected humans of autologous lymphocytes transduced with a ribozyme that cleaves HIV-1 RNA. Hum Gene Ther. 1998;9(16):2407–2425. doi:10.1089/hum.1998.9.16-2407.
  • Mitsuyasu RT, Merigan TC, Carr A, et al. Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat Med. 2009;15(3):285–292. doi:10.1038/nm.1932.
  • Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–811. doi:10.1038/35888.
  • Zhang C, Zhang B. RNA therapeutics: updates and future potential. Sci China Life Sci. 2023;66(1):12–30. doi:10.1007/s11427-022-2171-2.
  • Crooke ST, Witztum JL, Bennett CF, et al. RNA-targeted therapeutics. Cell Metab. 2018;27(4):714–739. doi:10.1016/j.cmet.2018.03.004.
  • Capodici J, Karikó K, Weissman D. Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. J Immunol. 2002;169(9):5196–5201. doi:10.4049/jimmunol.169.9.5196.
  • ter Brake O, Konstantinova P, Ceylan M, et al. Silencing of HIV-1 with RNA interference: a multiple shRNA approach. Mol Ther. 2006;14(6):883–892. doi:10.1016/j.ymthe.2006.07.007.
  • Lee S-K, Dykxhoorn DM, Kumar P, et al. Lentiviral delivery of short hairpin RNAs protects CD4 T cells from multiple clades and primary isolates of HIV. Blood. 2005;106(3):818–826. doi:10.1182/blood-2004-10-3959.
  • Sano M, Li H, Nakanishi M, et al. Expression of long anti-HIV-1 hairpin RNAs for the generation of multiple siRNAs: advantages and limitations. Mol Ther. 2008;16(1):170–177. doi:10.1038/sj.mt.6300298.
  • Liang M, Kamata M, Chen KN, et al. Inhibition of HIV-1 infection by a unique short hairpin RNA to chemokine receptor 5 delivered into macrophages through hematopoietic progenitor cell transduction. J Gene Med. 2010;12(3):255–265. doi:10.1002/jgm.1440.
  • Zhou N, Fang J, Mukhtar M, et al. Inhibition of HIV-1 fusion with small interfering RNAs targeting the chemokine coreceptor CXCR4. Gene Ther. 2004;11(23):1703–1712. doi:10.1038/sj.gt.3302339.
  • Anderson J, Banerjea A, Akkina R. Bispecific short hairpin siRNA constructs targeted to CD4, CXCR4, and CCR5 confer HIV-1 resistance. Oligonucleotides. 2003;13(5):303–312. doi:10.1089/154545703322616989.
  • Bobbin ML, Burnett JC, Rossi JJ. RNA interference approaches for treatment of HIV-1 infection. Genome Med. 2015;7(1):50. doi:10.1186/s13073-015-0174-y.
  • DiGiusto DL, Krishnan A, Li L, et al. RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med. 2010;2(36):36ra43. doi:10.1126/scitranslmed.3000931.
  • Miyagishi M, Hayashi M, Taira K. Comparison of the suppressive effects of antisense oligonucleotides and siRNAs directed against the same targets in mammalian cells. Antisense Nucleic Acid Drug Dev. 2003;13(1):1–7. doi:10.1089/108729003764097296.
  • Li M, Li H, Rossi JJ. RNAi in combination with a ribozyme and TAR decoy for treatment of HIV infection in hematopoietic cell gene therapy. Ann N Y Acad Sci. 2006;1082(1):172–179. doi:10.1196/annals.1348.006.
  • Mizrahy S, Hazan-Halevy I, Dammes N, et al. Current progress in non-viral RNAi-based delivery strategies to lymphocytes. Mol Ther. 2017;25(7):1491–1500. doi:10.1016/j.ymthe.2017.03.001.
  • Gane EJ. Future anti-HBV strategies. Liver Int. 2017;37(Suppl 1):40–44. doi:10.1111/liv.13304.
  • Gottlieb J, Zamora MR, Hodges T, et al. ALN-RSV01 for prevention of bronchiolitis obliterans syndrome after respiratory syncytial virus infection in lung transplant recipients. J Heart Lung Transplant. 2016;35(2):213–221. doi:10.1016/j.healun.2015.08.012.
  • Babamiri B, Salimi A, Hallaj R. A molecularly imprinted electrochemiluminescence sensor for ultrasensitive HIV-1 gene detection using EuS nanocrystals as luminophore. Biosens Bioelectron. 2018;117:332–339. doi:10.1016/j.bios.2018.06.003.
  • Caglayan MO, Üstündağ Z. Spectrophotometric ellipsometry based tat-protein RNA-aptasensor for HIV-1 diagnosis. Spectrochim Acta A Mol Biomol Spectrosc. 2020;227:117748. doi:10.1016/j.saa.2019.117748.
  • Srisawat C, Engelke DR. Selection of RNA aptamers that bind HIV-1 LTR DNA duplexes: strand invaders. Nucleic Acids Res. 2010;38(22):8306–8315. doi:10.1093/nar/gkq696.
  • Sánchez-Luque FJ, Stich M, Manrubia S, et al. Efficient HIV-1 inhibition by a 16 nt-long RNA aptamer designed by combining in vitro selection and in silico optimisation strategies. Sci Rep. 2014;4(1):6242. doi:10.1038/srep06242.
  • Chaloin L, Lehmann MJ, Sczakiel G, et al. Endogenous expression of a high-affinity pseudoknot RNA aptamer suppresses replication of HIV-1. Nucleic Acids Res. 2002;30(18):4001–4008. doi:10.1093/nar/gkf522.
  • Held DM, Kissel JD, Saran D, et al. Differential susceptibility of HIV-1 reverse transcriptase to inhibition by RNA aptamers in enzymatic reactions monitoring specific steps during genome replication. J Biol Chem. 2006;281(35):25712–25722. doi:10.1074/jbc.M604460200.
  • Kissel JD, Held DM, Hardy RW, et al. Active site binding and sequence requirements for inhibition of HIV-1 reverse transcriptase by the RT1 family of single-stranded DNA aptamers. Nucleic Acids Res. 2007;35(15):5039–5050. doi:10.1093/nar/gkm420.
  • Joshi P, Prasad VR. Potent inhibition of human immunodeficiency virus type 1 replication by template analog reverse transcriptase inhibitors derived by SELEX (systematic evolution of ligands by exponential enrichment). J Virol. 2002;76(13):6545–6557. doi:10.1128/jvi.76.13.6545-6557.2002.
  • Lange MJ, Sharma TK, Whatley AS, et al. Robust suppression of HIV replication by intracellularly expressed reverse transcriptase aptamers is independent of ribozyme processing. Mol Ther. 2012;20(12):2304–2314. doi:10.1038/mt.2012.158.
  • Shiang Y-C, Ou C-M, Chen S-J, et al. Highly efficient inhibition of human immunodeficiency virus type 1 reverse transcriptase by aptamers functionalized gold nanoparticles. Nanoscale. 2013;5(7):2756–2764. doi:10.1039/c3nr33403a.
  • Whatley AS, Ditzler MA, Lange MJ, et al. Potent inhibition of HIV-1 reverse transcriptase and replication by nonpseudoknot, “UCAA-motif” RNA aptamers. Mol Ther Nucleic Acids. 2013;2(2):e71. doi:10.1038/mtna.2012.62.
  • Lange MJ, Nguyen PDM, Callaway MK, et al. RNA-protein interactions govern antiviral specificity and encapsidation of broad spectrum anti-HIV reverse transcriptase aptamers. Nucleic Acids Res. 2017;45(10):6087–6097. doi:10.1093/nar/gkx155.
  • Nguyen PDM, Zheng J, Gremminger TJ, et al. Binding interface and impact on protease cleavage for an RNA aptamer to HIV-1 reverse transcriptase. Nucleic Acids Res. 2020;48(5):2709–2722. doi:10.1093/nar/gkz1224.
  • Ojwang JO, Buckheit RW, Pommier Y, et al. T30177, an oligonucleotide stabilized by an intramolecular guanosine octet, is a potent inhibitor of laboratory strains and clinical isolates of human immunodeficiency virus type 1. Antimicrob Agents Chemother. 1995;39(11):2426–2435. doi:10.1128/AAC.39.11.2426.
  • Faure-Perraud A, Métifiot M, Reigadas S, et al. The guanine-quadruplex aptamer 93del inhibits HIV-1 replication ex vivo by interfering with viral entry, reverse transcription and integration. Antivir Ther. 2011;16(3):383–394. doi:10.3851/IMP1756.
  • Virgilio A, Amato T, Petraccone L, et al. Improvement of the activity of the anti-HIV-1 integrase aptamer T30175 by introducing a modified thymidine into the loops. Sci Rep. 2018;8(1):7447. doi:10.1038/s41598-018-25720-1.
  • Duclair S, Gautam A, Ellington A, et al. High-affinity RNA aptamers against the HIV-1 protease inhibit both in vitro protease activity and late events of viral replication. Mol Ther Nucleic Acids. 2015;4(2):e228. doi:10.1038/mtna.2015.1.
  • Dearborn AD, Eren E, Watts NR, et al. Structure of an RNA aptamer that can inhibit HIV-1 by blocking Rev-Cognate RNA (RRE) binding and Rev-Rev association. Structure. 2018;26(9):1187–1195.e4. doi:10.1016/j.str.2018.06.001.
  • Zhou J, Satheesan S, Li H, et al. Cell-specific RNA aptamer against human CCR5 specifically targets HIV-1 susceptible cells and inhibits HIV-1 infectivity. Chem Biol. 2015;22(3):379–390. doi:10.1016/j.chembiol.2015.01.005.
  • Perrone R, Butovskaya E, Lago S, et al. The G-quadruplex-forming aptamer AS1411 potently inhibits HIV-1 attachment to the host cell. Int J Antimicrob Agents. 2016;47(4):311–316. doi:10.1016/j.ijantimicag.2016.01.016.
  • Um H-J, Kim M, Lee S-H, et al. Preventing the formation of positive transcription elongation factor b by human cyclin T1-binding RNA aptamer for anti-HIV transcription. AIDS. 2012;26(13):1599–1605. doi:10.1097/QAD.0b013e3283554f7d.
  • Batista AC, Pacheco LGC. Detecting pathogens with zinc-finger, TALE and CRISPR- based programmable nucleic acid binding proteins. J Microbiol Methods. 2018;152:98–104. doi:10.1016/j.mimet.2018.07.024.
  • Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to fok I cleavage domain. Proc Natl Acad Sci U S A. 1996;93(3):1156–1160. doi:10.1073/pnas.93.3.1156.
  • Qu X, Wang P, Ding D, et al. Zinc-finger-nucleases mediate specific and efficient excision of HIV-1 proviral DNA from infected and latently infected human T cells. Nucleic Acids Res. 2013;41(16):7771–7782. doi:10.1093/nar/gkt571.
  • Badia R, Riveira-Muñoz E, Clotet B, et al. Gene editing using a zinc-finger nuclease mimicking the CCR5Δ32 mutation induces resistance to CCR5-using HIV-1. J Antimicrob Chemother. 2014;69(7):1755–1759. doi:10.1093/jac/dku072.
  • Deng J, Qu X, Lu P, et al. Specific and stable suppression of HIV provirus expression in vitro by chimeric zinc finger DNA methyltransferase 1. Mol Ther Nucleic Acids. 2017;6:233–242. doi:10.1016/j.omtn.2017.01.002.
  • Perez EE, Wang J, Miller JC, et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. 2008;26(7):808–816. doi:10.1038/nbt1410.
  • Holt N, Wang J, Kim K, et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol. 2010;28(8):839–847. doi:10.1038/nbt.1663.
  • Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370(10):901–910. doi:10.1056/NEJMoa1300662.
  • Okee M, Bayiyana A, Musubika C, et al. In vitro transduction and target-Mutagenesis efficiency of HIV-1 pol gene targeting ZFN and CRISPR/Cas9 delivered by various plasmids and/or vectors: toward an HIV cure. AIDS Res Hum Retroviruses. 2018;34(1):88–102. doi:10.1089/AID.2017.0234.
  • Benjamin R, Berges BK, Solis-Leal A, et al. TALEN gene editing takes aim on HIV. Hum Genet. 2016;135(9):1059–1070. doi:10.1007/s00439-016-1678-2.
  • Yu AQ, Ding Y, Lu ZY, et al. TALENs-mediated homozygous CCR5Δ32 mutations endow CD4+ U87 cells with resistance against HIV‑1 infection. Mol Med Rep. 2018;17(1):243–249. doi:10.3892/mmr.2017.7889.
  • Schwarze LI, Głów D, Sonntag T, et al. Optimisation of a TALE nuclease targeting the HIV co-receptor CCR5 for clinical application. Gene Ther. 2021;28(9):588–601. doi:10.1038/s41434-021-00271-9.
  • Romito M, Juillerat A, Kok YL, et al. Preclinical evaluation of a novel TALEN targeting CCR5 confirms efficacy and safety in conferring resistance to HIV-1 infection. Biotechnol J. 2021;16(1):e2000023. doi:10.1002/biot.202000023.
  • Dash PK, Chen C, Kaminski R, et al. CRISPR editing of CCR5 and HIV-1 facilitates viral elimination in antiretroviral drug-suppressed virus-infected humanized mice. Proc Natl Acad Sci U S A. 2023;120(19):e2217887120. doi:10.1073/pnas.2217887120.
  • Nerys-Junior A, Braga-Dias LP, Pezzuto P, et al. Comparison of the editing patterns and editing efficiencies of TALEN and CRISPR-Cas9 when targeting the human CCR5 gene. Genet Mol Biol. 2018;41(1):167–179. doi:10.1590/1678-4685-GMB-2017-0065.
  • Chung C-H, Allen AG, Atkins AJ, et al. Safe CRISPR-Cas9 inhibition of HIV-1 with high specificity and Broad-Spectrum activity by targeting LTR NF-κB binding sites. Mol Ther Nucleic Acids. 2020;21:965–982. doi:10.1016/j.omtn.2020.07.016.
  • Lu J, Liu J, Guo Y, et al. CRISPR-Cas9: a method for establishing rat models of drug metabolism and pharmacokinetics. Acta Pharm Sin B. 2021;11(10):2973–2982. doi:10.1016/j.apsb.2021.01.007.
  • Ye L, Wang J, Beyer AI, et al. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection. Proc Natl Acad Sci USA. 2014;111(26):9591–9596. doi:10.1073/pnas.1407473111.
  • Tebas P, Jadlowsky JK, Shaw PA, et al. CCR5-edited CD4+ T cells augment HIV-specific immunity to enable post-rebound control of HIV replication. J Clin Invest. 2021;131(7):e144486. doi:10.1172/JCI144486.
  • Xu L, Wang J, Liu Y, et al. CRISPR-Edited stem cells in a patient with HIV and acute lymphocytic leukemia. N Engl J Med. 2019;381(13):1240–1247. doi:10.1056/NEJMoa1817426.
  • Zhang Z, Hou W, Chen S. Updates on CRISPR-based gene editing in HIV-1/AIDS therapy. Virol Sin. 2022;37(1):1–10. doi:10.1016/j.virs.2022.01.017.
  • Sullenger BA, Gallardo HF, Ungers GE, et al. Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell. 1990;63(3):601–608. doi:10.1016/0092-8674(90)90455-n.
  • Clouser CL, Chauhan J, Bess MA, et al. Anti-HIV-1 activity of resveratrol derivatives and synergistic inhibition of HIV-1 by the combination of resveratrol and decitabine. Bioorg Med Chem Lett. 2012;22(21):6642–6646. doi:10.1016/j.bmcl.2012.08.108.
  • Shanmugam G, Rakshit S, Sarkar K. HDAC inhibitors: targets for tumor therapy, immune modulation and lung diseases. Transl Oncol. 2022;16:101312. doi:10.1016/j.tranon.2021.101312.
  • Lehrman G, Hogue IB, Palmer S, et al. Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. Lancet. 2005;366(9485):549–555. doi:10.1016/S0140-6736(05)67098-5.
  • Archin NM, Cheema M, Parker D, et al. Antiretroviral intensification and valproic acid lack sustained effect on residual HIV-1 viremia or resting CD4+ cell infection. PLoS One. 2010;5(2):e9390. doi:10.1371/journal.pone.0009390.
  • Archin NM, Liberty AL, Kashuba AD, et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature. 2012;487(7408):482–485. doi:10.1038/nature11286.
  • Reuse S, Calao M, Kabeya K, et al. Synergistic activation of HIV-1 expression by deacetylase inhibitors and prostratin: implications for treatment of latent infection. PLoS One. 2009;4(6):e6093. doi:10.1371/journal.pone.0006093.
  • Rasmussen TA, Schmeltz Søgaard O, Brinkmann C, et al. Comparison of HDAC inhibitors in clinical development: effect on HIV production in latently infected cells and T-cell activation. Hum Vaccin Immunother. 2013;9(5):993–1001. doi:10.4161/hv.23800.
  • Wightman F, Lu HK, Solomon AE, et al. Entinostat is a histone deacetylase inhibitor selective for class 1 histone deacetylases and activates HIV production from latently infected primary T cells. AIDS. 2013;27(18):2853–2862. doi:10.1097/QAD.0000000000000067.
  • Yang W, Sun Z, Hua C, et al. Chidamide, a histone deacetylase inhibitor-based anticancer drug, effectively reactivates latent HIV-1 provirus. Microbes Infect. 2018;20(9–10):626–634. doi:10.1016/j.micinf.2017.10.003.
  • Li JH, Ma J, Kang W, et al. The histone deacetylase inhibitor chidamide induces intermittent viraemia in HIV-infected patients on suppressive antiretroviral therapy. HIV Med. 2020;21(11):747–757. doi:10.1111/hiv.13027.
  • Lan J, Yang K, Byrd D, et al. Provirus activation plus CD59 blockage triggers antibody-dependent complement-mediated lysis of latently HIV-1-infected cells. J Immunol. 2014;193(7):3577–3589. doi:10.4049/jimmunol.1303030.
  • Wei DG, Chiang V, Fyne E, et al. Histone deacetylase inhibitor romidepsin induces HIV expression in CD4 T cells from patients on suppressive antiretroviral therapy at concentrations achieved by clinical dosing. PLoS Pathog. 2014;10(4):e1004071. doi:10.1371/journal.ppat.1004071.
  • Li B-X, Zhang H, Liu Y, et al. Novel pathways of HIV latency reactivation revealed by integrated analysis of transcriptome and target profile of bryostatin. Sci Rep. 2020;10(1):3511. doi:10.1038/s41598-020-60614-1.
  • Hany L, Turmel M-O, Barat C, et al. Bryostatin-1 decreases HIV-1 infection and viral production in human primary macrophages. J Virol. 2022;96(4):e0195321. doi:10.1128/JVI.01953-21.
  • Washizaki A, Murata M, Seki Y, et al. The novel PKC activator 10-Methyl-Aplog-1 combined with JQ1 induced strong and synergistic HIV reactivation with tolerable global T cell activation. Viruses. 2021;13(10):2037. doi:10.3390/v13102037.
  • Lu P, Qu X, Shen Y, et al. The BET inhibitor OTX015 reactivates latent HIV-1 through P-TEFb. Sci Rep. 2016;6(1):24100. doi:10.1038/srep24100.
  • Zhang X-X, Lin J, Liang T-Z, et al. The BET bromodomain inhibitor apabetalone induces apoptosis of latent HIV-1 reservoir cells following viral reactivation. Acta Pharmacol Sin. 2019;40(1):98–110. doi:10.1038/s41401-018-0027-5.
  • Scheller C, Ullrich A, Lamla S, et al. Dual activity of phosphorothioate CpG oligodeoxynucleotides on HIV: reactivation of latent provirus and inhibition of productive infection in human T cells. Ann N Y Acad Sci. 2006;1091(1):540–547. doi:10.1196/annals.1378.095.
  • Larson EC, Novis CL, Martins LJ, et al. Mycobacterium tuberculosis reactivates latent HIV-1 in T cells in vitro. PLoS One. 2017;12(9):e0185162. doi:10.1371/journal.pone.0185162.
  • Macedo AB, Resop RS, Martins LJ, et al. Influence of biological sex, age, and HIV status in an in vitro primary cell model of HIV latency using a CXCR4 tropic virus. AIDS Res Hum Retroviruses. 2018;34(9):769–777. doi:10.1089/AID.2018.0098.
  • Bhargavan B, Woollard SM, Kanmogne GD. Toll-like receptor-3 mediates HIV-1 transactivation via NFκB and JNK pathways and histone acetylation, but prolonged activation suppresses tat and HIV-1 replication. Cell Signal. 2016;28(2):7–22. doi:10.1016/j.cellsig.2015.11.005.
  • Tsai A, Irrinki A, Kaur J, et al. Toll-Like receptor 7 agonist GS-9620 induces HIV expression and HIV-Specific immunity in cells from HIV-Infected individuals on suppressive antiretroviral therapy. J Virol. 2017;91(8):e02166-16. doi:10.1128/JVI.02166-16.
  • Schlaepfer E, Audigé A, Joller H, et al. TLR7/8 triggering exerts opposing effects in acute versus latent HIV infection. J Immunol. 2006;176(5):2888–2895. doi:10.4049/jimmunol.176.5.2888.
  • Diallo M, Zheng Y, Chen X, et al. Prospect of IL-2, IL-7, IL-15 and IL-21 for HIV immune-based therapy. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2011;36(11):1037–1045. doi:10.3969/j.issn.1672-7347.2011.11.002.
  • Harwood O, O'Connor S. Therapeutic potential of IL-15 and N-803 in HIV/SIV infection. Viruses. 2021;13(9):1750. doi:10.3390/v13091750.
  • Wykes MN, Lewin SR. Immune checkpoint blockade in infectious diseases. Nat Rev Immunol. 2018;18(2):91–104. doi:10.1038/nri.2017.112.
  • Bourke NM, Napoletano S, Bannan C, et al. Control of HIV infection by IFN-α: implications for latency and a cure. Cell Mol Life Sci. 2018;75(5):775–783. doi:10.1007/s00018-017-2652-4.
  • Margolis DM, Archin NM, Cohen MS, et al. Curing HIV: seeking to target and clear persistent infection. Cell. 2020;181(1):189–206. doi:10.1016/j.cell.2020.03.005.
  • Harper J, Gordon S, Chan CN, et al. CTLA-4 and PD-1 dual blockade induces SIV reactivation without control of rebound after antiretroviral therapy interruption. Nat Med. 2020;26(4):519–528. doi:10.1038/s41591-020-0782-y.
  • Debyser Z, Bruggemans A, Van Belle S, et al. LEDGINs, inhibitors of the interaction between HIV-1 integrase and LEDGF/p75, are potent antivirals with a potential to cure HIV infection. Adv Exp Med Biol. 2021;1322:97–114. doi:10.1007/978-981-16-0267-2_4.
  • Alamer E, Zhong C, Liu Z, et al. Epigenetic suppression of HIV in myeloid cells by the BRD4-Selective small molecule modulator ZL0580. J Virol. 2020;94(11):e01880-19. doi:10.1128/JVI.01880-19.
  • Jin H, Li D, Lin M-H, et al. Tat-Based therapies as an adjuvant for an HIV-1 functional cure. Viruses. 2020;12(4):415. doi:10.3390/v12040415.
  • Kessing CF, Nixon CC, Li C, et al. In vivo suppression of HIV rebound by Didehydro-Cortistatin A, a “block-and-lock” strategy for HIV-1 treatment. Cell Rep. 2017;21(3):600–611. doi:10.1016/j.celrep.2017.09.080.
  • Mousseau G, Aneja R, Clementz MA, et al. Resistance to the tat inhibitor Didehydro-Cortistatin a is mediated by heightened basal HIV-1 transcription. mBio. 2019;10(4):e01750-18. doi:10.1128/mBio.01750-18.
  • Mediouni S, Kessing CF, Jablonski JA, et al. The tat inhibitor didehydro-cortistatin a suppresses SIV replication and reactivation. Faseb J. 2019;33(7):8280–8293. doi:10.1096/fj.201801165R.
  • Jean MJ, Hayashi T, Huang H, et al. Curaxin CBL0100 blocks HIV-1 replication and reactivation through inhibition of viral transcriptional elongation. Front Microbiol. 2017;8:2007. doi:10.3389/fmicb.2017.02007.
  • Low JS, Fassati A. Hsp90: a chaperone for HIV-1. Parasitology. 2014;141(9):1192–1202. doi:10.1017/S0031182014000298.
  • Gavegnano C, Detorio M, Montero C, et al. Ruxolitinib and tofacitinib are potent and selective inhibitors of HIV-1 replication and virus reactivation in vitro. Antimicrob Agents Chemother. 2014;58(4):1977–1986. doi:10.1128/AAC.02496-13.
  • Umotoy J, Bagaya BS, Joyce C, et al. Rapid and focused maturation of a VRC01-Class HIV broadly neutralizing antibody lineage involves both binding and accommodation of the N276-Glycan. Immunity. 2019;51(1):141–154.e6. doi:10.1016/j.immuni.2019.06.004.
  • Williams WB, Zhang J, Jiang C, et al. Initiation of HIV neutralizing B cell lineages with sequential envelope immunizations. Nat Commun. 2017;8(1):1732. doi:10.1038/s41467-017-01336-3.
  • Daniels CN, Saunders KO. Antibody responses to the HIV-1 envelope high mannose patch. Adv Immunol. 2019;143:11–73. doi:10.1016/bs.ai.2019.08.002.
  • Andrabi R, Pallesen J, Allen JD, et al. The chimpanzee SIV envelope trimer: structure and deployment as an HIV vaccine template. Cell Rep. 2019;27(8):2426–2441.e6. doi:10.1016/j.celrep.2019.04.082.
  • Finney J, Yang G, Kuraoka M, et al. Cross-Reactivity to kynureninase tolerizes B cells that express the HIV-1 broadly neutralizing antibody 2F5. J Immunol. 2019;203(12):3268–3281. doi:10.4049/jimmunol.1900069.
  • Kong R, Xu K, Zhou T, et al. Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science. 2016;352(6287):828–833. doi:10.1126/science.aae0474.
  • Calarese DA, Scanlan CN, Zwick MB, et al. Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science. 2003;300(5628):2065–2071. doi:10.1126/science.1083182.
  • Julg B, Stephenson KE, Wagh K, et al. Safety and antiviral activity of triple combination broadly neutralizing monoclonal antibody therapy against HIV-1: a phase 1 clinical trial. Nat Med. 2022;28(6):1288–1296. doi:10.1038/s41591-022-01815-1.
  • Kwon YD, Asokan M, Gorman J, et al. A matrix of structure-based designs yields improved VRC01-class antibodies for HIV-1 therapy and prevention. MAbs. 2021;13(1):1946918. doi:10.1080/19420862.2021.1946918.
  • Blair HA. Ibalizumab: a review in multidrug-resistant HIV-1 infection. Drugs. 2020;80(2):189–196. doi:10.1007/s40265-020-01258-3.
  • Wang C-Y, Wong W-W, Tsai H-C, et al. Effect of anti-CD4 antibody UB-421 on HIV-1 rebound after treatment interruption. N Engl J Med. 2019;380(16):1535–1545. doi:10.1056/NEJMoa1802264.
  • The Lancet Hiv,. What future for HIV vaccines? Lancet HIV 2023;10(3):e143. doi:10.1016/S2352-3018(23)00030-9.
  • Arunachalam PS, Charles TP, Joag V, et al. T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers. Nat Med. 2020;26(6):932–940. doi:10.1038/s41591-020-0858-8.
  • Yang H, Rei M, Brackenridge S, et al. HLA-E-restricted. Gag specific CD8+ T cells can suppress HIV-1 infection, offering vaccine opportunities. Sci Immunol. 2021;6(57):eabg1703. doi:10.1126/sciimmunol.abg1703.
  • Picker LJ, Lifson JD, Gale M, et al. Programming cytomegalovirus as an HIV vaccine. Trends Immunol. 2023;44(4):287–304. doi:10.1016/j.it.2023.02.001.
  • Malouli D, Hansen SG, Hancock MH, et al. Cytomegaloviral determinants of CD8+ T cell programming and RhCMV/SIV vaccine efficacy. Sci Immunol. 2021;6(57):eabg5413. doi:10.1126/sciimmunol.abg5413.
  • Malouli D, Gilbride RM, Wu HL, et al. Cytomegalovirus-vaccine-induced unconventional T cell priming and control of SIV replication is conserved between primate species. Cell Host Microbe. 2022;30(9):1207–1218.e7. doi:10.1016/j.chom.2022.07.013.
  • Hansen SG, Hancock MH, Malouli D, et al. Myeloid cell tropism enables MHC-E-restricted CD8+ T cell priming and vaccine efficacy by the RhCMV/SIV vaccine. Sci Immunol. 2022;7(72):eabn9301. doi:10.1126/sciimmunol.abn9301.
  • Liu B, Zhang W, Xia B, et al. Broadly neutralizing antibody-derived CAR T cells reduce viral reservoir in individuals infected with HIV-1. J Clin Invest. 2021;131(19):e150211. doi:10.1172/JCI150211.
  • Anthony-Gonda K, Ray A, Su H, et al. In vivo killing of primary HIV-infected cells by peripheral-injected early memory-enriched anti-HIV duoCAR T cells. JCI Insight. 2022;7(21):e161698. doi:10.1172/jci.insight.161698.
  • Henrich TJ, Hu Z, Li JZ, et al. Long-term reduction in peripheral blood HIV type 1 reservoirs following reduced-intensity conditioning allogeneic stem cell transplantation. J Infect Dis. 2013;207(11):1694–1702. doi:10.1093/infdis/jit086.
  • Verheyen J, Thielen A, Lübke N, et al. Rapid rebound of a preexisting CXCR4-tropic human immunodeficiency virus variant after allogeneic transplantation with CCR5 Δ32 homozygous stem cells. Clin Infect Dis. 2019;68(4):684–687. doi:10.1093/cid/ciy565.
  • Henrich TJ, Hanhauser E, Marty FM, et al. Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: report of 2 cases. Ann Intern Med. 2014;161(5):319–327. doi:10.7326/M14-1027.
  • Hassett JM, Zaroulis CG, Greenberg ML, et al. Bone marrow transplantation in AIDS. N Engl J Med. 1983;309(11):665. doi:10.1056/NEJM198309153091114.
  • Verdonck LF, de Gast GC, Lange JM, et al. Syngeneic leukocytes together with suramin failed to improve immunodeficiency in a case of transfusion-associated AIDS after syngeneic bone marrow transplantation. Blood. 1988;71(3):666–671. doi:10.1182/blood.V71.3.666.666.
  • Re A, Cattaneo C, Michieli M, et al. High-dose therapy and autologous peripheral-blood stem-cell transplantation as salvage treatment for HIV-associated lymphoma in patients receiving highly active antiretroviral therapy. J Clin Oncol. 2003;21(23):4423–4427. doi:10.1200/JCO.2003.06.039.
  • Krishnan A, Molina A, Zaia J, et al. Durable remissions with autologous stem cell transplantation for high-risk HIV-associated lymphomas. Blood. 2005;105(2):874–878. doi:10.1182/blood-2004-04-1532.
  • Hsu J, Van Besien K, Glesby MJ, et al. HIV-1 remission and possible cure in a woman after haplo-cord blood transplant. Cell. 2023;186(6):1115–1126. doi:10.1016/j.cell.2023.02.030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.