518
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Mosquito species identity matters: unraveling the complex interplay in vector-borne diseases

ORCID Icon
Received 07 Jul 2023, Accepted 14 May 2024, Published online: 25 May 2024

References

  • World Health Organization. 2020. Vector-borne diseases[Online]. Available: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases. [Accessed: 11-Aug-2022]
  • World Health Organization. 2023. Malaria. Fact sheets.
  • Tolle MA. Mosquito-borne diseases. Curr Probl Pediatr Adolesc Health Care. 2009;39(4):97–140. doi: 10.1016/j.cppeds.2009.01.001.
  • WHO, W.H.O. and UNICEF. 2017. Global vector control response 2017-2030
  • Bakonyi T, Haussig JM. West Nile virus keeps on moving up in Europe. Eurosurveillance. 2020;25(46):2001938. doi: 10.2807/1560-7917.ES.2020.25.46.2001938.
  • Wilkerson RC, Linton YM, Strickman D. Mosquitoes of the world. Baltimore: Johns Hopkins University Press; 2021.
  • Knols BGJ. Review of “Mosquitoes of the World. by Richard C. Wilkerson, Yvonne-Marie Linton, and Daniel Strickman. Parasit vectors. 2021;14: 341.
  • Yee DA, Yee S. Robust network stability of mosquitoes and human pathogens of medical importance. Parasit Vectors. 2022;15:216.
  • Hebert PDN, Cywinska A, Ball SL, et al. Biological identifications through DNA barcodes. Proc Royal Society B: Biol Sci. 2003:270;313–321.
  • Ruzzante L, Reijnders MJ, Waterhouse RM. Of genes and genomes: mosquito evolution and diversity. Trends Parasitol. 2019;35:32–51.
  • Lambrechts L, Halbert J, Durand P, et al. Host genotype by parasite genotype interactions underlying the resistance of anopheline mosquitoes to Plasmodium falciparum. Malar J. 2005;4(1):3. doi: 10.1186/1475-2875-4-3.
  • Wilkerson RC, Linton Y-M, Fonseca DM, et al. Making mosquito taxonomy useful: a stable classification of tribe aedini that balances utility with current knowledge of evolutionary relationships. PLoS One. 2015;10(7):e0133602. doi: 10.1371/journal.pone.0133602.
  • Pei-Yong S. Molecular virology and control of flaviviruses. Singapore: Caister Academic Press; 2012.
  • Weissenböck H, Hubálek Z, Bakonyi T, et al. Zoonotic mosquito-borne flaviviruses: worldwide presence of agents with proven pathogenicity and potential candidates of future emerging diseases. Vet Microbiol. 2010;140:271–280.
  • Engler O, Savini G, Papa A, et al. European surveillance for West Nile virus in mosquito populations. Int J Environ Res Public Health. 2013;10:4869–4895.
  • Ferraguti M, Martínez-de la Puente J, Figuerola J, et al. Ecological effects on the dynamics of West Nile virus and avian plasmodium: the importance of mosquito communities and landscape. Viruses. 2021;13(7):1208. doi: 10.3390/v13071208.
  • Ergunay K, Gunay F, Oter K, et al. Arboviral surveillance of field-collected mosquitoes reveals circulation of West Nile virus lineage 1 strains in Eastern thrace, Turkey. Vector Borne Zoonotic Dis. 2013;13(10):744–752. doi: 10.1089/vbz.2012.1288.
  • Balenghien T, Vazeille M, Grandadam M, et al. Vector competence of some French culex and aedes mosquitoes for West Nile virus. Vector Borne Zoonotic Dis. 2008;8(5):589–595. doi: 10.1089/vbz.2007.0266.
  • Figuerola J, Jiménez-Clavero MÁ, Ruíz-López MJ, et al. A one health view of the West Nile virus outbreak in Andalusia (Spain) in 2020. Emerg Microbes Infect. 2022;11(1):2570–2578. doi: 10.1080/22221751.2022.2134055.
  • Poisot T, Kéfi S, Morand S, et al. A continuum of specialists and generalists in empirical communities. PLoS One. 2015;10(5):e0114674. doi: 10.1371/journal.pone.0114674.
  • Kelley S, Farrell B. Is specialization a dead end? The phylogeny of host use in dendroctonus bark beetles (scolytidae). Evolution 1998;52(6):1731–1743. doi: 10.2307/2411346.
  • Nosil P. Transition rates between specialization and generalization in phytophagous insects. Evolution. 2002;56:1701–1706. doi: 10.1111/j.0014-3820.2002.tb01482.x.
  • Powell JR. An evolutionary perspective on vector-borne diseases. Front Genet. 2019;10:1266. doi: 10.3389/fgene.2019.01266.
  • Harbach R. 2020. Genus Anopheles Meigen, 1818. Mosquito Taxonomic Inventory. [Online]. Available: http://mosquito-taxonomic-inventory.info/genus-emanophelesem-meigen-1818-0. [Accessed: 11-Aug-2021]
  • Service M, Townson H. The Anopheles vector. In: Gilles H, Warrell D, editors. Essential Malariology. 4th ed. London: CRC Press; 2017. pp. 59–84.
  • Sinka ME, Bangs MJ, Manguin S, et al. A global map of dominant malaria vectors. Parasit Vectors. 2012;5:69.
  • Harbach R. The classification of genus anopheles (diptera: culicidae): a working hypothesis of phylogenetic relationships. Bull Entomol Res. 2004;94(6):537–553. doi: 10.1079/ber2004321.
  • Collins FH, Paskewitz SM. Malaria: current and future prospects for control. Annu Rev Entomol. 1995;40(1):195–219. doi: 10.1146/annurev.en.40.010195.001211.
  • Gutiérrez-López R, Martínez-de la Puente J, Gangoso L, et al. Do mosquitoes transmit the avian malaria-like parasite haemoproteus? An experimental test of vector competence using mosquito saliva. Parasit Vectors. 2016;9:1–7.
  • Kilpatrick AM, Randolph SE. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. The Lancet. 2012;380(9857):1946–1955. doi: 10.1016/S0140-6736(12)61151-9.
  • Ross R. Some quantitative studies in epidemiology. Nature. 1911;87(2188):466–467. doi: 10.1038/087466a0.
  • Ross R. The logical basis of the sanitary policy of mosquito reduction. Science. 1905;22(570):689–699. doi: 10.1126/science.22.570.689.
  • Ross R. The prevention of malaria. London: John Murray; 1910.
  • Waite H. Mosquitoes and malaria. A study of the relation between the number of mosquitoes in a locality and the malaria rate. Biometrika. 1910;7(4):421–436. doi: 10.2307/2345376.
  • Lotka AJ. Contributions to the analysis of malaria epidemiology. II. General part (continued). Comparison of two formulae given by sir ronald ross. Am J Hyg. 1923;3(supp1):38–54. doi: 10.1093/oxfordjournals.aje.a118965.
  • Fine PEM. Tropical disease - A challenge for epidemiology: ross’s a priori pathometry - A perspective. J R Soc Med. 1975;68:547–551.
  • Power AG, Flecker AS. The role of vector diversity in disease dynamics. Infect Dis Ecol. 2011;:534–545.
  • Roche B, Rohani P, Dobson AP, et al. The impact of community organization on vector-borne pathogens. Am Nat. 2013;181:1–11.
  • Roberts M, Dobson A. The population dynamics of communities of parasitic helminths. Math Biosci. 1995;126(2):191–214. doi: 10.1016/0025-5564(94)00036-y.
  • Dobson A, Roberts M. The population dynamics of parasitic helminth communities. Parasitology. 1994;109 Suppl(S1):S97–S108. doi: 10.1017/s0031182000085115.
  • Dobson A, Foufopoulos J. Emerging infectious pathogens of wildlife. Philosophical Transactions of the Royal Society B: Biological Sciences. 2001;356:1001–1012.
  • Davey TH, Gordon RM. The estimation of the density of infective anophelines as a method of calculating the relative risk of inoculation with malaria from different species or in different localities. Ann Trop Med Parasitol. 1933;27:27–52.
  • Ferraguti M, Martínez-de la Puente J, Jiménez-Clavero MÁ, et al. A field test of the dilution effect hypothesis in four avian multi-host pathogens. PLoS Pathog. 2021;17(6):e1009637. doi: 10.1371/journal.ppat.1009637.
  • Hoi A, et al. Deconstructing the impact of malaria vector diversity on disease risk. American Naturalist. 2020;196: e 61–E70.
  • Chaves LF, Hamer GL, Walker ED, et al. Climatic variability and landscape heterogeneity impact urban mosquito diversity and vector abundance and infection. Ecosphere. 2011;2(6):art70. doi: 10.1890/ES11-00088.1.
  • Ferraguti M, Magallanes S, Suarez-Rubio M, et al. Does land-use and land cover affect vector-borne diseases? A systematic review and meta-analysis. Landsc Ecol. 2023;38(10):2433–2451. doi: 10.1007/s10980-023-01746-3.
  • Ferraguti M, Dimas Martins A, Artzy-Randrup Y. Quantifying the invasion risk of West Nile virus: insights from a multi-vector and multi-host SEIR model. One Health. 2023;17:100638. doi: 10.1016/j.onehlt.2023.100638.
  • Cleveland CA, Dallas TA, Vigil S, et al. Vector communities under global change may exacerbate and redistribute infectious disease risk. Parasitol Res. 2023;122(4):963–972. doi: 10.1007/s00436-023-07799-2.
  • Zahouli JBZ, et al. Urbanization is a main driver for the larval ecology of aedes mosquitoes in arbovirus-endemic settings in South-Eastern côte d’Ivoire. PLoS Negl. Trop. Dis. 2017;11:e0005751.
  • Ostfeld R, Keesing F. The function of biodiversity in the ecology of vector-borne zoonotic diseases. Can J Zool. 2000;78:2061–2078.
  • LoGiudice K, Duerr STK, Newhouse MJ, et al. Impact of host community composition on lyme disease risk. Ecology. 2008;89(10):2841–2849. doi: 10.1890/07-1047.1.
  • Johnson P, Thieltges D. Diversity, decoys and the dilution effect: how ecological communities affect disease risk. J Exp Biol. 2010;213(6):961–970. doi: 10.1242/jeb.037721.
  • Civitello DJ, et al. Biodiversity inhibits parasites: broad evidence for the dilution effect. PNAS. 2015;112:8667–8671.
  • Gotelli NJ, Colwell RK. Estimating species richness. In: Biological diversity: frontiers in measurement and assessment. Oxford: Oxford University Press; 2011. pp. 39–54.
  • Agrawal A, Gopal K. Application of diversity index in measurement of species diversity. In Biomonitoring of water and waste water. New Delhi: Springer India; 2013. pp. 41–48.
  • Gray S, Banerjee N. Mechanisms of arthropod transmission of plant and animal viruses. Microbiol Mol Biol Rev. 1999;63(1):128–148. doi: 10.1128/MMBR.63.1.128-148.1999.
  • Crans W. A classification system for mosquito life cycles: life cycle types for mosquitoes of the northeastern United States. J Vector Ecol. 2004;29(1):1–10.
  • Huppert A, Katriel G. Mathematical modelling and prediction in infectious disease epidemiology. Clin Microbiol Infect. 2013;19(11):999–1005. doi: 10.1111/1469-0691.12308.
  • Restif O, et al. Model-guided fieldwork: practical guidelines for multidisciplinary research on wildlife ecological and epidemiological dynamics. Ecol Lett. 2012;15:1083–1094.