308
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Transient 1D heat exchanger model for the simulation of domestic cooling cycles working with R600a

, , , , &
Pages 1010-1017 | Received 12 Nov 2014, Accepted 04 May 2015, Published online: 22 Aug 2015

References

  • Abdelaziz, O., V. Aute, and R. Radermacher. 2008. Effect of void fraction model on the dynamic performance of moving boundary heat exchanger. Proceedings of the 12th International Refrigeration and Air Conditioning Conference at Purdue, West Lafayette, IN, CD-ROM.
  • Abdelaziz, O., J. Winkler, V. Aute, and R. Radermacher. 2006. Transient simulation of a transcritical carbon dioxide refrigeration system. Proceedings of the 11th International Refrigeration and Air Conditioning Conference at Purdue, West Lafayette, IN, CD-ROM.
  • Berger, E., M. Heimel, R. Almbauer, and W. Lang. 2012. 1D heat exchanger simulation to capture the cycling transients of domestic refrigeration appliances working with R600a. Proceedings of the 14th International Refrigeration and Air Conditioning Conference at Purdue, West Lafayette, IN, CD-ROM.
  • Björk, E., and B. Palm. 2006. Refrigerant mass charge distribution in a domestic refrigerator, Part I: Transient conditions. Applied Thermal Engineering 26(8–9):829–37.
  • El Hajal, J., J.R. Thome, and A. Cavallini. 2003. Condensation in horizontal tubes. Part 1: Two-phase flow pattern map. International Journal of Heat and Mass Transfer 46(18):3349–63.
  • Gupta, J.K., M. Ram Gopal, and S. Chakraborty. 2007. Modeling of a domestic frost-free refrigerator. International Journal of Refrigeration 30(2):311–22.
  • Hermes, C.J.L., and C. Melo. 2008. A first-principles simulation model for start-up and cycling transients of household refrigerators. International Journal of Refrigeration 31(8):1341–57.
  • Hermes, C.J.L., and C. Melo. 2009. Assessment of the energy performance of household refrigerators via dynamic simulation. Applied Thermal Engineering 29(5–6):1153–65.
  • Jakobsen, A. 1995. Energy optimisation of refrigeration systems: The domestic refrigerator—A case study. PhD thesis. Lyngby, Denmark: The Technical University of Denmark.
  • Janssen, M.J.P., L.J.M. Kuijpers, and J.A. de Witt. 1988. Theoretical and experimental investigation of a dynamic model for small refrigerating systems. Proceedings of the 2nd International Refrigeration and Air Conditioning Conference at Purdue, West Lafayette, IN, pp. 245–256.
  • Koury R.N.N., L. Machado, and K.A.R. Ismail. 2001. Numerical simulation of a variable speed refrigeration system. International Journal of Refrigeration 24(2):192–200.
  • Laguerre, O., S. Ben Amara, J. Moureh, and D. Flick. 2007. Numerical simulation of air flow and heat transfer in domestic refrigerators. Journal of Food Engineering 81(1):144–56.
  • Lemmon, E.W., M.L. Huber, and M.O. McLinden. 2012. NIST Standard Reference Database 23: Reference fluid thermodynamic and transport properties—REFPROP, Version 9.0, National Institute of Standards and Technology, Gaithersburg, MD.
  • Li, B., and A.G. Alleyne. 2010. A dynamic model of a vapor compression cycle with shut-down and start-up operations. International Journal of Refrigeration 33(3):538–52.
  • Liang, N., S. Shao, C. Tian, and Y. Yan. 2010. Dynamic simulation of variable capacity refrigeration systems under abnormal conditions. Applied Thermal Engineering 30(10):1205–14.
  • Melo, C., R.T. de Silva Ferreira, R.H. Pereira, and C.O. Negrao. 1988. Dynamic behavior of a vapor compression refrigerator: A theoretical and experimental analysis. Proceedings of the 2nd International Refrigeration and Air Conditioning Conference at Purdue, West Lafayette, IN, pp. 98–106.
  • Melo, C., and C.J.L. Hermes. 2009. A heat transfer correlation for natural draft wire-and-tube condensers. International Journal of Refrigeration 32(3):546–55.
  • Pettit, N.B., M. Willatzen, and L. Ploug-Sorensen. 1998. A general dynamic simulation model for evaporators and condensers in refrigeration. Part II: Simulation and control of an evaporator. International Journal of Refrigeration 21(5):404–14.
  • Philipp, J. 2002. Optimierung von Haushaltskühlgeräten mittels numerischer Modellierung, Forschungsberichte des Deutschen Kälte-und Klimatechnischen Vereins, Deutscher Kälte-und Klimatechnischen Verein e.V. (DKV), Stuttgart.
  • Porkhial, S., B. Khastoo, and M.R. Modarres Razavi. 2006. Transient response of finned-tube condenser in household refrigerators. Applied Thermal Engineering 26(14–15):1725–9.
  • Porkhial, S., B. Khastoo, and M. Saffar-Avval. 2004. Transient response of dry expansion evaporator in household refrigerators. Applied Thermal Engineering 24(10):1465–80.
  • Quiben, J.M., and J.R. Thome. 2007. Flow pattern based two-phase frictional pressure drop model for horizontal tubes. Part II: New phenomenological model. International Journal of Heat and Fluid Flow 28(5):1060–72.
  • Steiner, D. 2006. Verein Deutscher Ingenieure VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC), VDI-Wärmeatlas, Chapter Hbb, Strömungssieden gesättigter Flüssigkeiten. Berlin Heidelberg: Springer.
  • Thome, J.R., J. El Hajal, and A. Cavallini. 2003. Condensation in horizontal tubes. Part 2: New heat transfer model based on flow regimes. International Journal of Heat and Mass Transfer 46(18):3365–87.
  • Willatzen, M., N.B. Pettit, and L. Ploug-Sorensen. 1998. A general dynamic simulation model for evaporators and condensers in refrigeration. Part I: Moving-boundary formulation of two-phase flows with heat exchange. International Journal of Refrigeration 21(5):398–403.
  • Wojtan, L., T. Ursenbacher, and J.R. Thome. 2005a. Investigation of flow boiling in horizontal tubes: Part I—A new diabatic two-phase flow pattern map. International Journal of Heat and Mass Transfer 48(14):2955–69.
  • Wojtan, L., T. Ursenbacher, and J.R. Thome. 2005b. Investigation of flow boiling in horizontal tubes: Part II—Development of a new heat transfer model for stratified-wavy, dryout and mist flow regimes. International Journal of Heat and Mass Transfer 48(14):2970–85.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.