609
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Semi-Analytical Method for g-Function Calculation of bore fields with series- and parallel-connected boreholes

References

  • Abdelaziz, S.L., T.Y. Ozudogru, C.G. Olgun, and J.R. Martin. 2014. Multilayer finite line source model for vertical heat exchangers. Geothermics 51:406–16. doi:10.1016/j.geothermics.2014.03.004.
  • ASHRAE. 2015. ASHRAE Handbook — HVAC Applications. Atlanta GA: ASHRAE.
  • Bandyopadhyay, G., W. Gosnold, and M. Mann. 2008. Analytical and semi-analytical solutions for short-time transient response of ground heat exchangers. Energy and Buildings 40(10):1816–24. doi:10.1016/j.enbuild.2008.04.005.
  • Beier, R.A., and M.D. Smith. 2003. Minimum duration of in-situ tests on vertical boreholes. ASHRAE Transactions 109:475–86.
  • Cimmino, M. 2015. The effects of borehole thermal resistances and fluid flow rate on the g-functions of geothermal bore fields. International Journal of Heat and Mass Transfer 91:1119–27. doi:10.1016/j.ijheatmasstransfer.2015.08.041.
  • Cimmino, M. 2016. Fluid and borehole wall temperature profiles in vertical geothermal boreholes with multiple U-tubes. Renewable Energy 96:137–47. doi:10.1016/j.renene.2016.04.067.
  • Cimmino, M. 2018a. A finite line source simulation model for geothermal systems with series- and parallel-connected boreholes and independent fluid loops. Journal of Building Performance Simulation 11(4):414–32. doi:10.1080/19401493.2017.1381993.
  • Cimmino, M. 2018b. g-Functions for bore fields with mixed parallel and series connections considering axial fluid temperature variations. Proceedings of the IGSHPA Research Track 2018, International Ground Source Heat Pump Association, September 18–20, pp. 262–70. doi:10.22488/okstate.18.000015.
  • Cimmino, M. 2018c. Fast calculation of the g-functions of geothermal borehole fields using similarities in the evaluation of the finite line source solution. Journal of Building Performance Simulation 11(6):655–68. doi:10.1080/19401493.2017.1423390.
  • Cimmino, M., and M. Bernier. 2014. A semi-analytical method to generate g-functions for geothermal bore fields. International Journal of Heat and Mass Transfer 70(c):641–50. doi:10.1016/j.ijheatmasstransfer.2013.11.037.
  • Cimmino, M., M. Bernier, and F. Adams. 2013. A contribution towards the determination of g-functions using the finite line source. Applied Thermal Engineering 51(1–2):401–12. doi:10.1016/j.applthermaleng.2012.07.044.
  • Claesson, J., and G. Hellström. 2011. Multipole method to calculate borehole thermal resistances in a borehole heat exchanger. HVAC&R Research 17(6):895–911. doi:10.1080/10789669.2011.609927.
  • Claesson, J., and S. Javed. 2011. An analytical method to calculate borehole fluid temperatures for time-scales from minutes to decades. ASHRAE Transactions 117(2):279–88.
  • Cui, P., H. Yang, and Z. Fang. 2006. Heat transfer analysis of ground heat exchangers with inclined boreholes. Applied Thermal Engineering 26(11–12):1169–75. doi:10.1016/j.applthermaleng.2005.10.034.
  • Dusseault, B., P. Pasquier, and D. Marcotte. 2018. A block matrix formulation for efficient g-function construction. Renewable Energy 121(June):249–60. doi:10.1016/J.RENENE.2017.12.092.
  • Erol, S., and B. François. 2018. Multilayer analytical model for vertical ground heat exchanger with groundwater flow. Geothermics 71(January):294–305. doi:10.1016/j.geothermics.2017.09.008.
  • Eskilson, P. 1987. Ph.D. thesis. Thermal analysis of heat extraction boreholes. Department of Mathematical Physics, University of Lund, Lund, Sweden.
  • Fossa, M. 2011. The temperature penalty approach to the design of borehole heat exchangers for heat pump applications. Energy and Buildings 43(6):1473–9. doi:10.1016/j.enbuild.2011.02.020.
  • Hellström, G. 1991. Ground Heat Storage: Thermal Analysis of Duct Storage Systems. Lund, Sweden: University of Lund.
  • Hu, J. 2017. An improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow. Applied Energy 202(September):537–49. doi:10.1016/j.apenergy.2017.05.152.
  • Javed, S., and J. Claesson. 2011. New analytical and numerical solutions for the short-term analysis of vertical ground heat exchangers. ASHRAE Transactions 117(1):3–12.
  • Lamarche, L. 2011. Analytical g-function for inclined boreholes in ground-source heat pump systems. Geothermics 40(4):241–9. doi:10.1016/j.geothermics.2011.07.006.
  • Lamarche, L. 2015. Short-time analysis of vertical boreholes, new analytic solutions and choice of equivalent radius. International Journal of Heat and Mass Transfer 91(December):800–7. doi:10.1016/j.ijheatmasstransfer.2015.07.135.
  • Lamarche, L. 2017a. Mixed arrangement of multiple input-output borehole systems. Applied Thermal Engineering 124:466–76. doi:10.1016/j.applthermaleng.2017.06.060.
  • Lamarche, L. 2017b. g-Function generation using a piecewise-linear profile applied to ground heat exchangers. International Journal of Heat and Mass Transfer 115(December):354–60. doi:10.1016/j.ijheatmasstransfer.2017.08.051.
  • Lamarche, L., and B. Beauchamp. 2007a. A new contribution to the finite line-source model for geothermal boreholes. Energy and Buildings 39(2):188–98. doi:10.1016/j.enbuild.2006.06.003.
  • Lamarche, L., and B. Beauchamp. 2007b. New solutions for the short-time analysis of geothermal vertical boreholes. International Journal of Heat and Mass Transfer 50(7–8):1408–19. doi:10.1016/j.ijheatmasstransfer.2006.09.007.
  • Lazzarotto, A. 2014. A network-based methodology for the simulation of borehole heat storage systems. Renewable Energy 62:265–75. doi:10.1016/j.renene.2013.07.020.
  • Lazzarotto, A. 2016. A methodology for the calculation of response functions for geothermal fields with arbitrarily oriented boreholes – Part 1. Renewable Energy 86:1380–93. doi:10.1016/j.renene.2015.09.056.
  • Li, M., and A.C.K. Lai. 2012a. New temperature response functions (g functions) for pile and borehole ground heat exchangers based on composite-medium line-source theory. Energy 38(1):255–63. doi:10.1016/J.ENERGY.2011.12.004.
  • Li, M., and A.C.K. Lai. 2012b. Heat-source solutions to heat conduction in anisotropic media with application to pile and borehole ground heat exchangers. Applied Energy 96(August):451–8. doi:10.1016/j.apenergy.2012.02.084.
  • Li, M., and A.C.K. Lai. 2013. Analytical model for short-time responses of ground heat exchangers with U-shaped tubes: Model development and validation. Applied Energy 104(April):510–6. doi:10.1016/J.APENERGY.2012.10.057.
  • Marcotte, D., and P. Pasquier. 2008. Fast fluid and ground temperature computation for geothermal ground-loop heat exchanger systems. Geothermics 37(6):651–65. doi:10.1016/j.geothermics.2008.08.003.
  • Marcotte, D., and P. Pasquier. 2009. The effect of borehole inclination on fluid and ground temperature for GLHE systems. Geothermics 38(4):392–8. doi:10.1016/j.geothermics.2009.06.001.
  • Marcotte, D., and P. Pasquier. 2014. Unit-response function for ground heat exchanger with parallel, series or mixed borehole arrangement. Renewable Energy 68:14–24. doi:10.1016/j.renene.2014.01.023.
  • Molina-Giraldo, N., P. Blum, K. Zhu, P. Bayer, and Z. Fang. 2011. A moving finite line source model to simulate borehole heat exchangers with groundwater advection. International Journal of Thermal Sciences 50(12):2506–13. doi:10.1016/j.ijthermalsci.2011.06.012.
  • Monzó, P., P. Mogensen, J. Acuña, F. Ruiz-Calvo, and C. Montagud. 2015. A novel numerical approach for imposing a temperature boundary condition at the borehole wall in borehole fields. Geothermics 56(July):35–44. doi:10.1016/J.GEOTHERMICS.2015.03.003.
  • Monzó, P., A. R. Puttige, J. Acuña, P. Mogensen, A. Cazorla, J. Rodriguez, C. Montagud, and F. Cerdeira. 2018. Numerical modeling of ground thermal response with borehole heat exchangers connected in parallel. Energy and Buildings 172(August):371–84. doi:10.1016/J.ENBUILD.2018.04.057.
  • Naldi, C., and E. Zanchini. 2019. A new numerical method to determine isothermal g-functions of borehole heat exchanger fields. Geothermics 77(January):278–87. doi:10.1016/j.geothermics.2018.10.007.
  • Numerical Logics. 1999. Canadian Weather for Energy Calculations, Users Manual and CD-ROM. Downsview ON, Canada: Environment Canada.
  • Pahud, D., and G. Hellström. 1996. The new duct ground heat model for TRNSYS. Proceedings of Eurotherm Seminar N° 49, Eindhoven, The Netherlands. A. A. van Steenhoven and W. G. J. van Helden, eds., pp. 127–36.
  • Sibbitt, B., D. McClenahan, R. Djebbar, J. Thornton, B. Wong, J. Carriere, and J. Kokko. 2012. The performance of a high solar fraction seasonal storage district heating system – Five years of operation. Energy Procedia 30(January):856–65. doi:10.1016/j.egypro.2012.11.097.
  • Zeng, H.Y., N.R. Diao, and Z.H. Fang. 2002. A finite line-source model for boreholes in geothermal heat exchangers. Heat Transfer - Asian Research 31(7):558–67. doi:10.1002/htj.10057.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.