263
Views
0
CrossRef citations to date
0
Altmetric
Articles

Numerical investigation of a displacer-type pulse tube refrigerator with work recovery

, , , &
Pages 1341-1354 | Received 21 Mar 2022, Accepted 02 Aug 2022, Published online: 23 Aug 2022

References

  • Antao, D. S., and B. Farouk. 2011. Numerical simulations of transport processes in a pulse tube cryocooler: Effects of taper angle. International Journal of Heat and Mass Transfer 54 (21–22):4611–20. doi:10.1016/j.ijheatmasstransfer.2011.06.016
  • Banjare, Y. P., R. K. Sahoo, and S. K. Sarangi. 2009. CFD simulation of a Gifford–McMahon type pulse tube refrigerator. International Journal of Thermal Sciences 48 (12):2280–7. doi:10.1016/j.ijthermalsci.2009.04.013
  • Cha, J. S., S. M. Ghiaasiaan, P. V. Desai, J. P. Harvey, and C. S. Kirkconnell. 2006. Multi-dimensional flow effects in pulse tube refrigerators. Cryogenics 46 (9):658–65. doi:10.1016/j.cryogenics.2006.03.001
  • Chen, X., F. Ling, Y. P. Zeng, and Y. N. Wu. 2019. Investigation of the high efficiency pulse tube refrigerator with acoustic power recovery. Applied Thermal Engineering 159:113904. doi:10.1016/j.applthermaleng.2019.113904
  • Deng, W. F., S. S. Liu, X. Chen, L. Ding, and Z. H. Jiang. 2020a. A work-recovery pulse tube refrigerator for natural gas liquefaction. Cryogenics 111:103170. doi:10.1016/j.cryogenics.2020.103170
  • Deng, W. F., S. S. Liu, Z. H. Jiang, L. Ding, and Y. N. Wu. 2020b. Development of a spaceborne pulse tube cooler operating at 170K. International Journal of Refrigeration 115:1–8. doi:10.1016/j.ijrefrig.2020.02.028
  • Flake, B., and A. Razani. 2004. Modeling pulse tube cryocoolers with CFD. American Institute of Physics 710 (2004):1493–9. doi:10.1063/1.1774843
  • Gifford, W. E., and R. C. Longsworth. 1964. Pulse-tube refrigeration. Journal of Engineering for Industry 86 (3):264–8. doi:10.1115/1.3670530
  • Gu, C., Y. Zhou, J. J. Wang, W. Ji, and Q. Zhou. 2012. CFD analysis of nonlinear processes in pulse tube refrigerators: Streaming induced by vortices. International Journal of Heat and Mass Transfer 55 (25–26):7410–8. doi:10.1016/j.ijheatmasstransfer.2012.07.085
  • Guo, Z. M., J. M. Pfotenhauer, F. K. Miller, and S. W. Zhu. 2022. A research of micro-pulse tube cryocooler with displacer phase shifter. Applied Thermal Engineering 205:117995. doi:10.1016/j.applthermaleng.2021.117995
  • Hu, J. Y., S. Chen, J. Zhu, L. M. Zhang, E. C. Luo, W. Dai, and H. B. Li. 2016. An efficient pulse tube cryocooler for boil-off gas reliquefaction in liquid natural gas tanks. Applied Energy 164:1012–8. doi:10.1016/j.apenergy.2015.03.096
  • Kanao, K., N. Watanabe, and Y. Kanazawa. 1994. A miniature pulse tube refrigerator for temperatures below 100K. Cryogenics 34 (1994):167–70. doi:10.1016/S0011-2275(05)80035-9
  • Mikulin, E. I., A. A. Tarasov, and M. P. Shkrebyonock. 1984. Low-temperature expansion pulse tubes. Advances in Cryogenic Engineering 29 (1984):629–37. doi:10.1007/978-1-4613-9865-3_72
  • Radebaugh, R. 1990. A review of pulse tube refrigeration. Advances in Cryogenic Engineering 35 (5):1191–205. doi:10.1007/978-1-4613-0639-9_143
  • Rana, H., M. A. Abolghasemi, R. Stone, M. Dadd, and P. Bailey. 2020. Numerical modelling of a coaxial Stirling pulse tube cryocooler with an active displacer for space applications. Cryogenics 106:103048. doi:10.1016/j.cryogenics.2020.103048
  • Shi, Y., and S. W. Zhu. 2017. Experimental investigation of pulse tube refrigerator with displacer. International Journal of Refrigeration 76:1–6. doi:10.1016/j.ijrefrig.2017.01.022
  • Shi, J. L., J. M. Pfotenhauer, and G. F. Nellis. 2006. Design model for a two-stage pulse tube cryocooler. AIP Conference Proceedings 829(1):329–336. doi:10.1063/1.2202432
  • Wang, K., S. Dubey, F. H. Choo, and F. Duan. 2016. Modelling of pulse tube refrigerators with inertance tube and mass-spring feedback mechanism. Applied Energy 171:172–83. doi:10.1016/j.apenergy.2016.03.002
  • Wang, L. Y., M. Wu, X. Sun, and Z. H. Gan. 2016. A cascade pulse tube cooler capable of energy recovery. Applied Energy 164:572–8. doi:10.1016/j.apenergy.2015.12.010
  • Wang, X. T., Y. B. Zhang, H. B. Li, W. Dai, S. Chen, G. Lei, and E. Luo. 2015. A high efficiency hybrid stirling-pulse tube cryocooler. AIP Advances 5 (3):037127. doi:10.1063/1.4915900
  • Zhao, Y. B., and H. Z. Dang. 2016. CFD simulation of a miniature coaxial Stirling-type pulse tube cryocooler operating at 128 Hz. Cryogenics 73:53–9. doi:10.1016/j.cryogenics.2015.11.007
  • Zhao, Y. B., G. R. Yu, J. Tan, X. C. Mao, J. Q. Li, R. Zha, N. Li, and H. Z. Dang. 2018. CFD modeling and experimental verification of oscillating flow and heat transfer processes in the micro coaxial Stirling-type pulse tube cryocooler operating at 90–170 Hz. Cryogenics 90:30–40. doi:10.1016/j.cryogenics.2018.01.003
  • Zheng, P., X. Chen, Y. P. Zeng, W. D. Wu, and Y. N. Wu. 2021. Effect of displacer on performance of Stirling-type pulse tube refrigerator with work recovery. Science and Technology for the Built Environment 27 (5):567–77. doi:10.1080/23744731.2021.1898245
  • Zhu, S. W., P. Y. Wu, and Z. Q. Chen. 1990. Double inlet pulse tube refrigerators: An important improvement. Cryogenics 30 (6):514–20. doi:10.1016/0011-2275(90)90051-D

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.