216
Views
1
CrossRef citations to date
0
Altmetric
Articles

Indoor environmental conditions in vernacular dwellings in Alentejo, Portugal

ORCID Icon, &
Pages 1370-1406 | Received 10 Mar 2022, Accepted 05 Aug 2022, Published online: 22 Aug 2022

References

  • A. addendum ad to A.S. 62-2001. 2003. Ventilation for Acceptable Indoor Air Quality.
  • AEMET. 2011. IM, Iberian Climate Atlas (1971-2000).
  • ANSI/ASHRAE 55-2020. 2020. Thermal Environmental Conditions for Human Occupancy, Ashrae. 58. ISSN 1041-2336
  • ASHRAE. 2017. 2017 ASHRAE handbook - fundamentals. SI, Atlanta, Georgia: ASHRAE.
  • Bassoud, A., H. Khelafi, A. M. Mokhtari, and A. Bada. 2021. Evaluation of summer thermal comfort in arid desert areas. Case study: Old adobe building in Adrar (South of Algeria). Building and Environment 205:108140. doi:10.1016/j.buildenv.2021.108140
  • Bedoya Frutos, C, and F. J. Neila González. 2001. Técnicas arquitectónicas y constructivas de acondicionamiento ambiental. Madrid: Editorial Munilla-Lería.
  • BREEAM, BREEAM Health and Wellbeing n.d. Accessed June 3, 2020 https://www.breeam.com/BREEAMUK2014SchemeDocument/content/05_health/hea01_nc.htm.
  • Carrapiço, I. C. 2016. Rehabilitación medioambiental e arquitectura vernácula: el caso de São Vicente e Ventosa, Alentejo. Madrid: García-maroto Editores S.L.
  • CEN-European Committee for Standardization. 2004. EN 13779: Ventilation for non-residential buildings - Performance requirements for ventilation and room-conditioning systems.
  • CEN-European Committee for Standardization. 2019. EN 17037 European Daylight Standard, https://velcdn.azureedge.net/∼/media/marketing/ee/professional/28mai2019 seminar/veluxen17037tallinn28052019.pdf.
  • Correia, M. 2002. A Habitação Vernácula Rural no Alentejo, Portugal. In: Memórias del IV Seminario y Iberoamericano sobre Vivienda Rural y Calidad de Vida en los Asentamientos Rurales. Chile: University of Chile, 134–44.
  • Correia, M. 2007. Rammed earth in Alentejo, Argumentum, Lisboa,
  • Costa Carrapiço, I, and J. N. González. 2014. Study for the rehabilitation of vernacular architecture with sustainable criteria. In Vernac. Herit. Earthen Archit. Contrib. Sustain. Dev., ed. S.R. Mariana Correia, Gilberto Carlos, 581–6. London, UK: Taylor & Francis Group.
  • Costa Carrapiço, I., J. N. González, R. Raslan, C. Sánchez-Guevara, and M. D. Redondas Marrero. 2022. Understanding thermal comfort in vernacular dwellings in Alentejo, Portugal: A mixed-methods adaptive comfort approach. Building and Environment 217:109084. doi:10.1016/j.buildenv.2022.109084
  • Costa-Carrapiço, I., B. Croxford, R. Raslan, and J. Neila González. 2022. Hygrothermal calibration and validation of vernacular dwellings: A genetic algorithm-based optimisation methodology. Journal of Building Engineering 55 doi:10.1016/j.jobe.2022.104717
  • Costa-Carrapiço, I., F. Gomes, M. Correia, and S. Rocha. 2014. Walls of high thermal inertia. In Versus, heritage for tomorrow: vernacular knowledge for sustainable architecture, ed. by M. Correia, L. Dipasquale, S. Mecca, 231–18. Firenze: Firenze University Press.
  • Costa-Carrapiço, I., R. Raslan, and J. N. González. 2020. A systematic review of genetic algorithm-based multi-objective optimisation for building retrofitting strategies towards energy efficiency. Energy and Buildings 210:109690. doi:10.1016/j.enbuild.2019.109690
  • de E. da I, S. 1972. Direcção-Geral de Minas e Serviços Geológicos, Ministério da Economia, Extract of the geological map of Portugal. Sheet 33-C Campo Maior.
  • Djamila, H., C. Chu, and S. Kumaresan. 2015. Effect of humidity on thermal comfort in the humid tropics. Journal of Building Construction and Planning Research 02 (02):109–17. doi:10.3390/buildings5031025
  • Du, X., R. Bokel, and A. van den Dobbelsteen. 2014. Building microclimate and summer thermal comfort in free-running buildings with diverse spaces: A Chinese vernacular house case. Building and Environment 82:215–27. doi:10.1016/j.buildenv.2014.08.022
  • EN16798-1 2019. Energy performance of buildings: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics.
  • European Standard 2007. EN 15251, Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings - Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics.
  • Fabbri, K, and A. Bonora. 2021. Two new indices for preventive conservation of the cultural heritage: Predicted risk of damage and heritage microclimate risk. Journal of Cultural Heritage 47:208–17. doi:10.1016/j.culher.2020.09.006
  • Fabbri, P. B. 2019. The Study of Historical Indoor Microclimate (HIM) to contribute towards heritage buildings preservation. Heritage 2 (3):2287–97. doi:10.3390/heritage2030140
  • Fernandes, J. 1997. Alentejo and algarve. In: Encyclopedia of Vernacular Architecture of the World, ed. by P. Oliver. Cambridge: Cambridge University Press.
  • Fernandes, J., C. Pimenta, R. Mateus, S. Silva, and L. Bragança. 2015. Contribution of Portuguese vernacular building strategies to indoor thermal comfort and occupants’ perception. Buildings 5 (4):1242–64. doi:10.3390/buildings5041242
  • Fernandes, J., R. Malheiro, M. De Fátima Castro, H. Gervásio, S. M. Silva, and R. Mateus. 2020. Thermal performance and comfort condition analysis in a vernacular building with a glazed balcony. Energies 13 (3):624. doi:10.3390/en13030624
  • Fernandes, J., R. Mateus, H. Gervásio, S. M. Silva, and L. Bragança. 2019. Passive strategies used in Southern Portugal vernacular rammed earth buildings and their influence in thermal performance. Renewable Energy 142:345–63. doi:10.1016/j.renene.2019.04.098
  • Fernandes, J., R. Mateus, L. Bragança, and J. J. Correia da Silva. 2015. Portuguese vernacular architecture: The contribution of vernacular materials and design approaches for sustainable construction. Architectural Science Review 58 (4):324–36. doi:10.1080/00038628.2014.974019
  • Fernandes, M, and M. Correia. 2005. Arquitectura de Terra em Portugal/Earth Architecture in Portugal. Lisboa: Argumentum.
  • Fonseca, I. 2007. Arquitcetura de terra em Avis. Lisboa: Argumentum.
  • Foruzanmehr, A. 2016. Thermal comfort and practicality: Separate winter and summer rooms in Iranian traditional houses. Architectural Science Review 59 (1):1–11. doi:10.1080/00038628.2014.939132
  • Gherri, B. 2015. Assessment of daylight performance in buildings. Methods and design strategies. Southampton: WIT Press/Computational Mechanics.
  • Gupta, J., M. Chakraborty, A. Paul, and V. Korrapatti. 2017. A comparative study of thermal performances of three mud dwelling units with courtyards in composite climate. Journal of Architecture and Urbanism 41 (3):184–98. doi:10.3846/20297955.2017.1355276
  • Henna, K., A. Saifudeen, and M. Mani. 2021. Resilience of vernacular and modernising dwellings in three climatic zones to climate change. Scientific Reports 11:1–14. doi:10.1038/s41598-021-87772-0
  • Huang, L., N. Hamza, B. Lan, and D. Zahi. 2016. Climate-responsive design of traditional dwellings in the cold-arid regions of Tibet and a field investigation of indoor environments in winter. Energy and Buildings 128:697–712. doi:10.1016/j.enbuild.2016.07.006
  • Huang, Z., J. Liu, H. Hao, and Y. Dong. 2017. Indoor humidity environment in Huizhou traditional vernacular dwellings of China in summer. Procedia Engineering 205:1350–6. doi:10.1016/j.proeng.2017.10.121
  • I.O. for Standardization 1995. ISO10551 - Ergonomics of the thermal environment - Assessment of the influence of the thermal environment using subjective judgement scales.
  • IPMA n.d. Accessed March 1, 2016. https://www.ipma.pt/.
  • ISO 7730 2005. Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria, 3rd ed. Geneva: International Organization for Standardization.
  • Kubota, T., D. H. C. Toe, and D. R. Ossen. 2014. Field investigation of indoor thermal environments in traditional Chinese shophouses with courtyards in Malacca. Journal of Asian Architecture and Building Engineering 13 (1):247–54. doi:10.3130/jaabe.13.247
  • Kubota, T., M. A. Zakaria, S. Abe, and D. H. C. Toe. 2017. Thermal functions of internal courtyards in traditional Chinese shophouses in the hot-humid climate of Malaysia. Building and Environment 112:115–31. doi:10.1016/j.buildenv.2016.11.005
  • Leo Samuel, D. G., K. Dharmasastha, S. M. Shiva Nagendra, and M. P. Maiya. 2017. Thermal comfort in traditional buildings composed of local and modern construction materials. International Journal of Sustainable Built Environment 6 (2):463–75. doi:10.1016/j.ijsbe.2017.08.001
  • Lima Basto, E. A., A. Faria e Silva, and C. Silva. 2013. Inquérito à Habitação Rural. 02–2013th ed., Lisboa.
  • Liu, S., C. Huang, Y. Liu, J. Shen, and Z. Li. 2018. Retrofitting traditional western hunan dwellings with passive strategies based on indoor thermal environment. Journal of Architectural Engineering 24 (3):04018017. doi:10.1061/(ASCE)AE.1943-5568.0000316
  • Michael, A., C. Heracleous, S. Thravalou, and M. Philokyprou. 2017. Lighting performance of urban vernacular architecture in the East-Mediterranean area: Field study and simulation analysis. Indoor and Built Environment 26 (4):471–87. doi:10.1177/1420326X15621613
  • Ministério das Finanças e da Economia e do Emprego 2013. Decreto-Lei n.o 118/2013, Diário Da República. 1.a série.
  • Miranda, P., F. Abreu, and R. Salgado. 1995. Estudo de impacte ambiental do alqueva: Clima. 186.
  • Montalbán Pozas, B, and F. J. Neila González. 2016. Hygrothermal behaviour and thermal comfort of the vernacular housings in the Jerte Valley (Central System, Spain). Energy and Buildings 130:219–27. doi:10.1016/j.enbuild.2016.08.045
  • Moutinho, M. 1979. A Arquitectura Popular Portuguesa. Lisboa: Editorial Estampa.
  • Pina dos Santos, C. A., and L. Matias. 2018. Coeficientes de Transmissão térmica de elementos da envolvente dos edifícios. - ITE 50, 24th ed. Lisboa: Laboratório Nacional de Engenharia Civil.
  • Pina dos Santos, C. A., and R. Rodrigues. 2017. Coeficientes de transmissão térmica de elementos opacos da envolvente dos edifícios - soluções construtivas de edifícios antiguas. ITE 54, 8th ed. Lisboa: Laboratório Nacional de Engenharia Civil.
  • Prianto, E, and E. Setyowati. 2015. Thermal comfort of wood-wall house in coastal and mountainous region in tropical area. Procedia Engineering 125:725–31. doi:10.1016/j.proeng.2015.11.114
  • RGEU 1951. Regulamento geral das Edificações Urbanas.
  • Rijal, H. B. 2021. Thermal adaptation of buildings and people for energy saving in extreme cold climate of Nepal. Energy and Buildings 230:110551. doi:10.1016/j.enbuild.2020.110551
  • RMUE n.d. Regulamento Municipal de Urbanização e Edificação (RMUE) DL. no. 169/99, Diário da República, 2.a série.
  • Rubio-Bellido, C., J. A. Pulido-Arcas, and J. M. Cabeza-Lainez. 2016. Understanding climatic traditions: A quantitative and qualitative analysis of historic dwellings of Cadiz. Indoor and Built Environment 27 (5):665–81. doi:10.1177/1420326X16682580
  • Salthammer, T., T. Schripp, S. Wientzek, and M. Wensing. 2014. Impact of operating wood-burning fireplace ovens on indoor air quality. Chemosphere 103:205–11. doi:10.1016/j.chemosphere.2013.11.067.
  • Sarkar, A, and S. Bose. 2015. Thermal performance design criteria for bio-climatic architecture in Himachal Pradesh. Current Science 109:1590–600. doi:10.18520/v109/i9/1590-1600
  • Shaeri, J., M. Yaghoubi, A. Aflaki, and A. Habibi. 2018. Evaluation of thermal comfort in traditional houses in a tropical climate. Buildings 8 (9):126. doi:10.3390/buildings8090126
  • Shaeri, J., M. Yaghoubi, and A. Habibi. 2018. Influence of Iwans on the thermal comfort of Talar rooms in the traditional houses: a study in Shiraz, Iran. Buildings 8 (6):81. doi:10.3390/buildings8060081
  • Shastry, V., M. Mani, and R. Tenorio. 2016. Evaluating thermal-comfort and building climatic-response in warm-humid climates for vernacular dwellings in Suggenhalli (India). Architectural Science Review 59 (1):12–26. doi:10.1080/00038628.2014.971701
  • Singh, M. K., S. Mahapatra, and J. Teller. 2015. Development of Thermal Comfort Models for Various Climatic Zones of North - East India. Sustainable Cities and Society 14:133–45. http://ac.els-cdn.com/S2210670714000973/1-s2.0-S2210670714000973-main.pdf?_tid = 50d07d9e-acc1-11e4-9dc4-00000aacb361&acdnat = 1423090881_01c49af4b88cdce8a3cd6689c6b63fe0
  • Singh, M. K., S. Mahapatra, and S. K. Atreya. 2010. Thermal performance study and evaluation of comfort temperatures in vernacular buildings of North-East India. Building and Environment 45 (2):320–9. doi:10.1016/j.buildenv.2009.06.009
  • SNA 1961. Arquitectura Popular em Portugal, 04–2004th ed. Lisboa: Sindicato Nacional dos Arquitectos.
  • ISO 7726 1998. Ergonomics of the thermal environment - Instruments for measuring physical quantities, 2nd ed. T.C. of the P. Environment, ed. European Committee for Standardization.
  • Toe, D. HC, and T. Kubota. 2015. Comparative assessment of vernacular passive cooling techniques for improving indoor thermal comfort of modern terraced houses in hot-humid climate of Malaysia. Solar Energy. 114:229–58. doi:10.1016/j.solener.2015.01.035
  • Tsovoodavaa, G, and I. Kistelegdi. 2019. Comparative analysis for traditional yurts using thermal dynamic simulations in Mongolian climate. Pollack Period 14 (2):97–108. doi:10.1556/606.2019.14.2.9
  • van Hoof, J., L. Schellen, V. Soebarto, J. K. W. Wong, and J. K. Kazak. 2017. Ten questions concerning thermal comfort and ageing. Building and Environment 120:123–33. doi:10.1016/j.buildenv.2017.05.008
  • Veiga de Oliveira, E, and F. Galhano. 2003. Arquitectura tradicional portuguesa. Lisboa: Publicações Dom Quixote.
  • VV.AA. 2005., Earth Architecture in Portugal, Argumentum, Lisboa,
  • WHO Regional Office for Europe. 2018., WHO Environmental Noise Guidelines for the European Region, Copenhagen, Denmark.
  • W.H. Organization 2014. WHO guidelines for indoor air quality: Household fuel combustion.
  • W.H.O. 2010. 2010. WHO Guidelines for Indoor Air Quality: selected pollutants. Copenhagen, Denmark: WHO Regional Office for Europe.
  • Walikewitz, N., B. Jänicke, M. Langner, F. Meier, and W. Endlicher. 2015. The difference between the mean radiant temperature and the air temperature within indoor environments: A case study during summer conditions. Building and Environment 84:151–61. doi:10.1016/j.buildenv.2014.11.004
  • Wolkoff, P. 2018. Indoor air humidity, air quality, and health – An overview. International Journal of Hygiene and Environmental Health 221 (3):376–90. doi:10.1016/j.ijheh.2018.01.015.
  • Xu, C., S. Li, X. Zhang, and S. Shao. 2018. Thermal comfort and thermal adaptive behaviours in traditional dwellings: A case study in Nanjing, China. Building and Environment 142:153–70. doi:10.1016/j.buildenv.2018.06.006
  • Yan, H., L. Yang, W. Zheng, W. He, and D. Li. 2016. Analysis of behaviour patterns and thermal responses to a hot–arid climate in rural China. Journal of Thermal Biology 59:92–102. doi:10.1016/j.jtherbio.2016.05.004.
  • Yang, L., R. Fu, W. He, Q. He, and Y. Liu. 2020. Adaptive thermal comfort and climate responsive building design strategies in dry–hot and dry–cold areas: Case study in Turpan, China. Energy and Buildings 209:109678. doi:10.1016/j.enbuild.2019.109678
  • Zhang, Z., Y. Zhang, and L. Jin. 2018. Thermal comfort in interior and semi-open spaces of rural folk houses in hot-humid areas. Building and Environment 128:336–47. doi:10.1016/j.buildenv.2017.10.028
  • Zhao, X., P. Nie, J. Zhu, L. Tong, and Y. Liu. 2020. Evaluation of thermal environments for cliff-side cave dwellings in cold region of China. Renewable Energy 158:154–66. doi:10.1016/j.renene.2020.05.128
  • Zhu, J., C. Xing, R. Li, C. Li, and X. Zhao. 2020. Experimental and theoretical investigation of thermal performance of Yaokang heating system in China. Energy and Buildings 226:110344. doi:10.1016/j.enbuild.2020.110344
  • Zhu, J., P. Nie, R. Li, L. Tong, and X. Zhao. 2019. Climate responsive characteristics of cliff-side cave dwellings in cold area of China. Energy Procedia 158:2731–6. doi:10.1016/j.egypro.2019.02.030

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.