368
Views
0
CrossRef citations to date
0
Altmetric
Articles

Study on indoor thermal comfort of different age groups in winter in a rural area of China’s hot-summer and cold-winter region

, ORCID Icon, ORCID Icon, &
Pages 1407-1419 | Received 29 Aug 2021, Accepted 15 Aug 2022, Published online: 12 Sep 2022

References

  • Al-Rashidi, K. E., D. L. Loveday, and N. K. Al-Mutawa. 2009. Investigating the applicability of different thermal comfort models in Kuwait classrooms operated in hybrid air-conditioning mode. In Proceedings of the International Conference in Sustainability in Energy and Buildings, ed. R. J. Howlett, L. C. Jain, and S. H. Lee. Berlin Heidelberg: Springer.
  • Antoniadis, D., N. Katsoulas, and D. K. Papanastasiou. 2020. Thermal environment of urban schoolyards: Current and future design with respect to children’s thermal comfort. Atmosphere 11 (11):1144. doi:10.3390/atmos11111144
  • ASHRAE. 2004. ANSI/ASHRAE Standard 55, Thermal environmental conditions for human occupancy. Atlanta, GA: ASHRAE.
  • Auliciems, A. 1969. Thermal requirements of secondary schoolchildren in winter. The Journal of Hygiene 67 (1):59–65. doi: 10.1017/S0022172400041425.
  • Auliciems, A. 1973. Thermal sensations of secondary schoolchildren in summer. The Journal of Hygiene 71 (3):453–8. doi: 10.1017/S002217240004643X.
  • Brager, G. S., and R. J. de Dear. 1998. Thermal adaptation in the built environment: A literature review. Energy and Buildings 27 (1):83–96. doi:10.1016/S0378-7788(97)00053-4
  • Cao, B., M. Luo, M. Li, and Y. Zhu. 2016. Too cold or too warm? A winter thermal comfort study in different climate zones in China. Energy and Buildings 133:469–77. doi:10.1016/j.enbuild.2016.09.050
  • Cao, S., and H. Deng. 2019. Investigation of temperature regulation effects on indoor thermal comfort, air quality, and energy savings toward green residential buildings. Science and Technology for the Built Environment 25 (3):309–21. doi:10.1080/23744731.2018.1526016
  • Carnicer, J. M., Y. Khiar, and J. M. Peña. 2019. Central orderings for the Newton interpolation formula. BIT Numerical Mathematics 59 (2):371–86. doi:10.1007/s10543-018-00743-2
  • Chen, L., Y. Wen, L. Zhang, and W. Xiang. 2015. Studies of thermal comfort and space use in an urban park square in cool and cold seasons in Shanghai. Building and Environment 94 (2):644–53. doi:10.1016/j.buildenv.2015.10.020
  • Cheng, B., Z. Gou, F. Zhang, Q. Feng, and Z. Huang. 2019. Thermal comfort in urban mountain parks in the hot summer and cold winter climate. Sustainable Cities and Society 51:101756. doi:10.1016/j.scs.2019.101756
  • Dear, R. D., J. Kim, C. Candido, and M. Deuble. 2014. Summertime thermal comfort in Australian school classrooms. In Proceedings of 8th Windsor Conference: Counting the Cost of Comfort in a changing world Cumberland Lodge, Windsor, UK, April 10-13. London: Network for Comfort and Energy Use in Buildings. http://nceub.org.uk
  • Fanger, P. O. 1970. Thermal comfort. Analysis and applications in environmental engineering. Copenhagen, Denmark: Danish Technical Press.
  • Fanger, P. O., and J. Toftum. 2002. Extension of the PMV model to non-air-conditioned buildings in warm climates. Energy and Buildings 34 (6):533–6. doi:10.1016/S0378-7788(02)00003-8
  • Ghali, K., N. Ghaddar, and M. Bizri. 2011. The influence of wind on outdoor thermal comfort in the city of Beirut: A theoretical and field study. Science and Technology for the Built Environment 17 (5):813–28.
  • Gilani, S., M. H. Khan, and W. Pao. 2015. Thermal comfort analysis of PMV model prediction in air conditioned and naturally ventilated buildings. Energy Procedia 75:1373–9. doi:10.1016/j.egypro.2015.07.218
  • Haddad, S., P. Osmond, S. King, and S. Heidari. 2014. Developing assumptions of metabolic rate estimation for primary school children in the calculation of the Fanger PMV model. In Proceedings of 8th Windsor Conference: Counting the Cost of Comfort in a changing world Cumberland Lodge, Windsor, UK, April 10-13. London: Network for Comfort and Energy Use in Buildings. http://nceub.org.uk
  • Havenith, G. 2007. Metabolic rate and clothing insulation data of children and adolescents during various school activities. Ergonomics 50 (10):1689–701. doi: 10.1080/00140130701587574.
  • Humphreys, M. A. 1977. A study of the thermal comfort of primary school children in summer. Building and Environment 12 (4):231–9. doi:10.1016/0360-1323(77)90025-7
  • ISO. 2005. ISO7730, Ergonomics of the thermal environment–Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria.
  • Jiao, Y., H. Yu, T. Wang, Y. An, and Y. Yu. 2017. Thermal comfort and adaptation of the elderly in free-running environments in Shanghai, China. Building and Environment 118:259–72. doi:10.1016/j.buildenv.2017.03.038
  • Jiao, Y., H. Yu, Y. Yu, Z. Wang, and Q. Wei. 2020. Adaptive thermal comfort models for homes for older people in Shanghai, China. Energy and Buildings 215:109918. doi:10.1016/j.enbuild.2020.109918
  • Kiki, G., C. Kouchadé, A. Houngan, S. J. Zannou-Tchoko, and P. André. 2020. Evaluation of thermal comfort in an office building in the humid tropical climate of Benin. Building and Environment 185:107277. doi:10.1016/j.buildenv.2020.107277
  • Kong, D., H. Liu, Y. Wu, B. Li, S. Wei, and M. Yuan. 2019. Effects of indoor humidity on building occupants’ thermal comfort and evidence in terms of climate adaptation. Building and Environment 155:298–307. doi:10.1016/j.buildenv.2019.02.039
  • Korsavi, S. S., and A. Montazami. 2020. Children’s thermal comfort and adaptive behaviours; UK primary schools during non-heating and heating seasons. Energy and Buildings 214:109857. doi:10.1016/j.enbuild.2020.109857
  • Li, B., W. Yu, M. Liu, and N. Li. 2011. Climatic strategies of indoor thermal environment for residential buildings in Yangtze River Region, China. Indoor and Built Environment 20 (1):101–11. doi:10.1177/1420326X10394495
  • Li, C., H. Liu, B. Li, and A. Sheng. 2019. Seasonal effect of humidity on human comfort in a hot summer/cold winter zone in China. Indoor and Built Environment 28 (2):264–77. doi:10.1177/1420326X17751594
  • Mehdi, M., X. Zhou, C. Li, and Q. Deng. 2021. A field investigation on adaptive thermal comfort in an urban environment considering individuals’ psychological and physiological behaviors in a cold-winter of Wuhan. Sustainability 13 (2):678. doi:10.3390/su13020678
  • Mors, S., J. L. Hensen, M. G. Loomans, and A. C. Boerstra. 2011. Adaptive thermal comfort in primary school classrooms: Creating and validating PMV-based comfort charts. Building and Environment 46 (12):2454–61. doi:10.1016/j.buildenv.2011.05.025
  • Nam, I., J. Yang, D. Lee, E. Park, and J. R. Sohn. 2015. A study on the thermal comfort and clothing insulation characteristics of preschool children in Korea. Building and Environment 92:724–33. doi:10.1016/j.buildenv.2015.05.041
  • Noda, L., A. V. Lima, J. F. Souza, S. Leder, and L. M. Quirino. 2020. Thermal and visual comfort of schoolchildren in air-conditioned classrooms in hot and humid climates. Building and Environment 182:107156. doi:10.1016/j.buildenv.2020.107156
  • Peng, C. 2010. Survey of thermal comfort in residential buildings under natural conditions in hot humid and cold wet seasons in Nanjing. Frontiers of Architecture and Civil Engineering in China 4 (4):503–11. doi:10.1007/s11709-010-0095-1
  • Qi, X. 2021. The choosing idea and its influence factors of the main body of old-age responsibility for rural residents in the central economically underdeveloped area (in Chinese). Nanchang, China: Jiangxi Agricultural University.
  • Raja, I. A., J. F. Nicol, K. J. McCartney, and M. A. Humphreys. 2001. Thermal comfort: Use of controls in naturally ventilated buildings. Energy and Buildings 33 (3):235–44. doi:10.1016/S0378-7788(00)00087-6
  • Sansaniwal, S. K., P. Tewari, S. Kumar, S. Mathur, and J. Mathur. 2020. Impact assessment of air velocity on thermal comfort in composite climate of India. Science and Technology for the Built Environment 26 (9):1301–20. doi:10.1080/23744731.2020.1793640
  • Tan, M., B. Li, H. Liu, W. Zhang, W. Li, and M. Xu. 2009. Field experiments on thermal comfort in university dormitories in Chongqing, China. Journal of Central South University of Technology 16 (1):55–61.
  • Teli, D., P. A. James, and M. F. Jentsch. 2013. Thermal comfort in naturally ventilated primary school classrooms. Building Research & Information 41 (3):301–16. doi:10.1080/09613218.2013.773493
  • Teli, D., M. F. Jentsch, and P. A. James. 2012. Naturally ventilated classrooms: An assessment of existing comfort models for predicting the thermal sensation and preference of primary school children. Energy and Buildings 53 (1):166–82. doi:10.1016/j.enbuild.2012.06.022
  • Trebilcock, M., J. Soto, and R. Figueroa. 2014. Thermal comfort in primary schools: A field study in Chile. In Proceedings of 8th Windsor Conference: Counting the Cost of Comfort in a changing world Cumberland Lodge, Windsor, UK, April 10-13. London: Network for Comfort and Energy Use in Buildings. http://nceub.org.uk
  • Wargocki, P., and D. P. Wyon. 2007. The effects of moderately raised classroom temperatures and classroom ventilation rate on the performance of schoolwork by children. HVAC&R Research 13 (2):193–220. doi:10.1080/10789669.2007.10390951
  • Wu, Z., N. Li, J. Peng, and J. Li. 2019. Effect of long-term indoor thermal history on human physiological and psychological responses: A pilot study in university dormitory buildings. Building and Environment 166:106425. doi:10.1016/j.buildenv.2019.106425
  • Wu, Z., N. Li, P. Wargocki, J. Peng, J. Li, and H. Cui. 2019. Field study on thermal comfort and energy saving potential in 11 split air-conditioned office buildings in Changsha, China. Energy 182:471–82. doi:10.1016/j.energy.2019.05.204
  • Xu, C., S. Li, X. Zhang, and S. Shao. 2018. Thermal comfort and thermal adaptive behaviours in traditional dwellings: A case study in Nanjing, China. Building and Environment 142:153–70. doi:10.1016/j.buildenv.2018.06.006
  • Xu, J., Z. Liu, and Y. Wang. 2020. Influences of three types of air-conditioning systems on human thermal comfort. Science and Technology for the Built Environment 26 (6):763–77. doi:10.1080/23744731.2020.1733876
  • Yan, H., Q. Liu, W. Zhao, C. Pang, M. Dong, H. Zhang, J. Gao, H. Wang, B. Hu, L. Yang, et al. 2020. The coupled effect of temperature, humidity, and air movement on human thermal response in hot–humid and hot–arid climates in summer in China. Building and Environment 177:106898. doi:10.1016/j.buildenv.2020.106898
  • Yang, B., T. Olofsson, F. Wang, and W. Lu. 2018. Thermal comfort in primary school classrooms: A case study under subarctic climate area of Sweden. Building and Environment 135 (1):237–45. doi:10.1016/j.buildenv.2018.03.019
  • Ye, X., Z. Zhou, Z. Lian, H. Liu, C. Li, and Y. Liu. 2006. Field study of a thermal environment and adaptive model in Shanghai. Indoor Air 16 (4):320–6. doi: 10.1111/j.1600-0668.2006.00434.x.
  • Yun, H., I. Nam, J. Kim, J. Yang, K. Lee, and J. Sohn. 2014. A field study of thermal comfort for kindergarten children in Korea: An assessment of existing models and preferences of children. Building and Environment 75 (1):182–9. doi:10.1016/j.buildenv.2014.02.003
  • Zhang, Y., H. Chen, and Q. Meng. 2013. Thermal comfort in buildings with split air-conditioners in hot-humid area of China. Building and Environment 64 (1):213–24. doi:10.1016/j.buildenv.2012.09.009
  • Zhang, Y., J. Wang, H. Chen, J. Zhang, and Q. Meng. 2010. Thermal comfort in naturally ventilated buildings in hot-humid area of China. Building and Environment 45 (11):2562–70. doi:10.1016/j.buildenv.2010.05.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.