171
Views
2
CrossRef citations to date
0
Altmetric
Articles

Experimental study on the heating performance of transcritical CO2 heat pump for electric buses

, , , , , & show all
Pages 65-74 | Received 15 May 2022, Accepted 30 Sep 2022, Published online: 15 Nov 2022

References

  • Aral, M. C., M. Suhermanto, and M. Hosoz. 2021. Performance evaluation of an automotive air conditioning and heat pump system using R1234yf and R134a. Science and Technology for the Built Environment 27 (1):44–60. doi:10.1080/23744731.2020.1776067
  • Binbin, Y., W. Dandong, X. Wei, Y. Haohong, and C. Jiangping. 2019. Performance analysis of transcritical CO2 electric vehicle air conditioning system. Journal of Shanghai Jiaotong University 53 (7):866–72. doi:10.16183/j.cnki.jsjtu.2019.07.014
  • Cao, F., Z. Ye, and Y. Wang. 2020. Experimental investigation on the influence of internal heat exchanger in a transcritical CO2 heat pump water heater. Applied Thermal Engineering 168:114855. doi:10.1016/j.applthermaleng.2019.114855
  • Chen, Y., H. Zou, J. Dong, J. Wu, H. Xu, and C. Tian. 2021. Experimental investigation on the heating performance of a CO2 heat pump system with intermediate cooling for electric vehicles. Applied Thermal Engineering 182 (1):116039. doi:10.1016/j.applthermaleng.2020.116039
  • Choi, Y. U., M. S. Kim, G. T. Kim, M. Kim, and M. S. Kim. 2017. Performance analysis of vapor injection heat pump system for electric vehicle in cold startup condition. International Journal of Refrigeration 80:24–36. doi:10.1016/j.ijrefrig.2017.04.026
  • Dandong, W., Y. Bingbing, H. Jichao, C. Liang, S. Junye, and C. Jiangping. 2018. Heating performance characteristics of CO2 heat pump system for electrical vehicle in a cold climate. International Journal of Refrigeration 85:27–41. doi:10.1016/j.ijrefrig.2017.09.009
  • Dandong, W., Z. Ke, Y. Binbin, H. Jichao, C. Liang, S. Junye, and C. Jiangping. 2018. Development and performance test of CO2 automotive heat pump system suitable for -20 °C environment. Journal of Refrigeration 39 (2):14–21.
  • Feng, F., Z. Zhang, X. Liu, C. Liu, and Y. Hou. 2020. The influence of internal heat exchanger on the performance of transcritical CO2 water source heat pump water heater. Energies 13 (7):1787. doi:10.3390/en13071787
  • Horrein, L., A. Bouscayrol, W. Lhomme, and C. Dépature. 2017. Impact of heating system on the range of an electric vehicle. IEEE Transactions on Vehicular Technology 66 (6):4668–77. doi:10.1109/TVT.2016.2615095
  • Hosoz, M, and M. Direk. 2006. Performance evaluation of an integrated automotive air conditioning and heat pump system. Energy Conversion and Management 47 (5):545–59. doi:doi:10.1016/j.enconman.2005.05.004
  • Jefferies, D., T.-A. Ly, A. Kunith, and D. Göhlich. 2015. Energiebedarf verschiedener Klimatisierungssysteme für Elektro-Linienbusse.
  • Junqi, D., W. Yibiao, J. Shiwei, Z. Xianhui, and H. Linjie. 2021. Experimental study of R744 heat pump system for electric vehicle application. Applied Thermal Engineering 183:116191. doi:10.1016/j.applthermaleng.2020.116191
  • Kang, D., J. H. Jeong, and B. Ryu. 2018. Heating performance of a VRF heat pump system incorporating double vapor injection in scroll compressor. International Journal of Refrigeration 96:50–62. doi:10.1016/j.ijrefrig.2018.09.027
  • Kwon, C., M. S. Kim, Y. Choi, and M. S. Kim. 2017. Performance evaluation of a vapor injection heat pump system for electric vehicles. International Journal of Refrigeration 74:138–50. doi:10.1016/j.ijrefrig.2016.10.004
  • Li, M., Y. Ma, W. Gong, and W. Su. 2009. Analysis of CO2 transcritical cycle heat pump dryers. Drying Technology 27 (4):548–54. doi:10.1080/07373930802715674
  • Liu, S., Z. Li, B. Dai, Z. Zhong, H. Li, M. Song, and Z. Sun. 2019. Energetic, economic and environmental analysis of air source transcritical CO2 heat pump system for residential heating in China. Applied Thermal Engineering 148:1425–1439. doi:10.1016/j.applthermaleng.2018.08.061
  • Linlin, W., J. Pengfei, W. Wei, Y. huCheng, M. Liansong, L. Shuangxi, and X. Xiang. 2020. Research on low temperature heat pump air conditioning system for new energy electric vehicles. Automotive Engineering 42 (12):8. doi:10.19562/j.chinasae.qcgc.2020.12.018
  • Lorentzen, G, and J. Pettersen. 1993. A new, efficient and environmentally benign system for car air-conditioning. International Journal of Refrigeration 16 (1):4–12. doi:10.1016/0140-7007(93)90014-Y
  • Moffat, R. J. 1988. Describing the uncertainties in experimental results. Experimental Thermal and Fluid Science 1 (1):3–17. doi:10.1016/0894-1777(88)90043-X
  • Molina, M. J, and F. S. Rowland. 1974. Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone. Nature 249 (5460):810–2. doi:10.1038/249810a0
  • Naeem, M., M. Iqbal, A. Anpalagan, A. Ahmad, M, and S. Obaidat. 2016. Chapter 15 - optimization classification and techniques of wsns in smart grid. In Smart cities and homes, ed. M. S. Obaidat and P. Nicopolitidis, 323–43. Boston: Morgan Kaufmann.
  • Nawaz, K., B. Shen, A. Elatar, V. Baxter, and O. Abdelaziz. 2018. Performance optimization of CO2 heat pump water heater. International Journal of Refrigeration 85:213–28. doi:doi:10.1016/j.ijrefrig.2017.09.027
  • Ramsey, D., A. Bouscayrol, L. Boulon, and A. Vaudrey. 2020. Simulation of an electric vehicle to study the impact of cabin heating on the driving range. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). doi:10.1109/VTC2020-Spring48590.2020.9129169
  • Riess, C., M. S. J. Walter, S. Weiherer, and M. Gröper. 2018. Evaluation and Quantification of the Range Extension of Battery Powered Electric Vehicles in Winter by Using a Separate Powered Heating Unit. 2018 International Conference and Exposition on Electrical And Power Engineering (EPE). doi:10.1109/ICEPE.2018.8559871
  • Sl, A., L. Zheng, B. Bda, C. Zz, D. Hla, B. Ms, and B. Zsa. 2019. Energetic, economic and environmental analysis of air source transcritical CO2 heat pump system for residential heating in China - ScienceDirect. Applied Thermal Engineering. doi:10.1016/j.applthermaleng.2018.08.061.
  • Song, X., D. Lu, Q. Lei, Y. Cai, D. Wang, J. Shi, and J. Chen. 2021. Experimental study on heating performance of a CO2 heat pump system for an electric bus. Applied Thermal Engineering 190:116789. doi:10.1016/j.applthermaleng.2021.116789
  • Yin, X., A. Wang, J. Fang, F. Cao, and X. Wang. 2021. Investigations on the dynamic characteristic and its influence factors of a transcritical CO2 automobile heat pump. Science and Technology for the Built Environment 27 (5):533–43. doi:10.1080/23744731.2020.1848143
  • Yulong, S., W. Haidan, Y. Xiang, and C. Feng. 2021. Overview of transcritical CO2 vapor compression refrigeration and heat pump technology. Journal of Refrigeration 42 (2):1–24. doi:10.3969/j.issn.0253-4339.2021.02.001
  • Zhou, B., Y. Wu, B. Zhou, R. Wang, W. Ke, S. Zhang, and J. Hao. 2016. Real-world performance of battery electric buses and their life-cycle benefits with respect to energy consumption and carbon dioxide emissions. Energy 96:603–13. doi:10.1016/j.energy.2015.12.041

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.