117
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Quantitative analysis of cost savings and occupants’ preferences in grid-interactive smart home operation

ORCID Icon, &
Pages 845-857 | Received 06 Jan 2023, Accepted 24 Jun 2023, Published online: 04 Sep 2023

References

  • Aparicio-Ruiz, P., E. Barbadilla-Martín, J. Guadix, and P. Cortés. 2021. KNN and adaptive comfort applied in decision making for HVAC systems. Annals of Operations Research 303 (1–2):217–31. doi:10.1007/s10479-019-03489-4.
  • Attoue, N., I. Shahrour, and R. Younes. 2018. Smart building: Use of the artificial neural network approach for indoor temperature forecasting. Energies 11 (2):395. doi:10.3390/en11020395.
  • Berthou, T., P. Stabat, R. Salvazet, and D. Marchio. 2014. Development and validation of a gray box model to predict thermal behavior of occupied office buildings. Energy and Buildings 74 (May):91–100. doi:10.1016/j.enbuild.2014.01.038.
  • Brock, F. V., K. C. Crawford, R. L. Elliott, G. W. Cuperus, S. J. Stadler, H. L. Johnson, and M. D. Eilts. 1995. The Oklahoma Mesonet: A technical overview. Journal of Atmospheric and Oceanic Technology 12 (1):5–19. doi:10.1175/1520-0426(1995)012<0005:TOMATO>2.0.CO;2
  • Chegari, B., M. Tabaa, E. Simeu, F. Moutaouakkil, and H. Medromi. 2021. Multi-objective optimization of building energy performance and indoor thermal comfort by combining artificial neural networks and metaheuristic algorithms. Energy and Buildings 239 (May):110839. doi:10.1016/j.enbuild.2021.110839.
  • Fanger, P. O. 1972. Thermal comfort, analysis and application in environmental engineering. New York: McGraw-Hill.
  • Gen, M., K. Ida, M. Sasaki, and J. U. Lee. 1989. Algorithms for solving large-scale 0–1 goal programming and its application to reliability optimization problem. Computers & Industrial Engineering 17 (1–4):525–30. doi:10.1016/0360-8352(89)90117-4.
  • Goh, C. H. K., and J. Apt. 2004. “Consumer strategies for controlling electric water heaters under dynamic pricing.” Carnegie Mellon Electricity Industry Center Working Paper, February.
  • Gurobi Optimization, L. L. C. 2021. Gurobi optimizer reference manual:969.
  • Hart, W. E., C. D. Laird, J.-P. Watson, D. L. Woodruff, G. A. Hackebeil, B. L. Nicholson, and J. D. Siirola. 2017. Pyomo—optimization modeling in python. Vol. 67. Springer Optimization and Its Applications. Cham: Springer International Publishing. doi:10.1007/978-3-319-58821-6.
  • Hart, W. E., C. Laird, J.-P. Watson, and D. L. Woodruff. 2012. Pyomo – optimization modeling in python. Springer Optimization and Its Applications. New York: Springer-Verlag. doi:10.1007/978-1-4614-3226-5.
  • Izawa, A., and M. Fripp. 2018. Multi-objective control of air conditioning improves cost, comfort and system energy balance. Energies 11 (9):2373. doi:10.3390/en11092373.
  • Jiang, Y., and L. Song. 2022. Connected home energy management for grid-interactive operations: Consider coupling effect among appliances. ASHRAE, Toronto, Canada.
  • Joe, J. 2022. Investigation on pre-cooling potential of UFAD via model-based predictive control. Energy and Buildings 259 (March):111898. doi:10.1016/j.enbuild.2022.111898.
  • Jones, D., and M. Tamiz. 2016. A review of goal programming. In Multiple criteria decision analysis: State of the art surveys, ed. Salvatore Greco, Matthias Ehrgott, and José Rui Figueira, 903–26. International Series in Operations Research & Management Science. New York: Springer. doi:10.1007/978-1-4939-3094-4_21.
  • Kampelis, N., N. Sifakis, D. Kolokotsa, K. Gobakis, K. Kalaitzakis, D. Isidori, and C. Cristalli. 2019. HVAC optimization genetic algorithm for industrial near-zero-energy building demand response. Energies 12 (11):2177. doi:10.3390/en12112177.
  • Katipamula, S., D. P. Chassin, D. D. Hatley, R. G. Pratt, and D. J. Hammerstrom. 2006. Transactive controls: A market-based GridWiseTM controls for building systems. PNNL-15921. Pacific Northwest National Lab. (PNNL), Richland, WA. doi:10.2172/901475.
  • Kepplinger, P., G. Huber, and J. Petrasch. 2015. Autonomous optimal control for demand side management with resistive domestic hot water heaters using linear optimization. Energy and Buildings, e-Nova 2013 – Sustainable Buildings: Supply – Evaluation - Integration 100 (August):50–5. doi:10.1016/j.enbuild.2014.12.016.
  • Marzband, M., F. Azarinejadian, M. Savaghebi, E. Pouresmaeil, J. M. Guerrero, and G. Lightbody. 2018. Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations. Renewable Energy.126 (October):95–106. doi:10.1016/j.renene.2018.03.021.
  • McPherson, R. A., C. A. Fiebrich, K. C. Crawford, J. R. Kilby, D. L. Grimsley, J. E. Martinez, J. B. Basara, B. G. Illston, D. A. Morris, K. A. Kloesel, et al. 2007. Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet. Journal of Atmospheric and Oceanic Technology 24 (3):301–21. doi:10.1175/JTECH1976.1.
  • Mostavi, E., S. Asadi, and D. Boussaa. 2017. Development of a new methodology to optimize building life cycle cost, environmental impacts, and occupant satisfaction. Energy 121:606–15. doi:10.1016/j.energy.2017.01.049.
  • Mtibaa, F., K.-K. Nguyen, M. Azam, A. Papachristou, J.-S. Venne, and M. Cheriet. 2020. LSTM-based indoor air temperature prediction framework for HVAC systems in smart buildings. Neural Computing and Applications 32 (23):17569–85. doi:10.1007/s00521-020-04926-3.
  • Nagpal, H., A. Staino, and B. Basu. 2020. Application of predictive control in scheduling of domestic appliances. Applied Sciences 10 (5):1627. doi:10.3390/app10051627.
  • Ogunsola, O. T., L. Song, and G. Wang. 2014. Development and validation of a time-series model for real-time thermal load estimation. Energy and Buildings 76 (June):440–9. doi:10.1016/j.enbuild.2014.02.075.
  • Perez, K. X., M. Baldea, and T. F. Edgar. 2016. Integrated HVAC management and optimal scheduling of smart appliances for community peak load reduction. Energy and Buildings 123 (July):34–40. doi:10.1016/j.enbuild.2016.04.003.
  • Rocha, H. R., I. H. Honorato, R. Fiorotti, W. C. Celeste, L. J. Silvestre, and J. A. Silva. 2021. An artificial intelligence based scheduling algorithm for demand-side energy management in smart homes. Applied Energy 282 (January):116145. doi:10.1016/j.apenergy.2020.116145.
  • Shaad, M., A. Momeni, C. P. Diduch, M. Kaye, and L. Chang. 2012. Parameter identification of thermal models for domestic electric water heaters in a direct load control program. In 2012 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 1–5. Montreal, QC: IEEE. doi:10.1109/CCECE.2012.6334885.
  • Sharifi, R., S. Fathi, and V. Vahidinasab. 2017. A review on demand-side tools in electricity market. Renewable and Sustainable Energy Reviews 72:565–72. doi:10.1016/j.rser.2017.01.020.
  • Sou, K. C., J. Weimer, H. Sandberg, and K. H. Johansson. 2011. Scheduling smart home appliances using mixed integer linear programming. In IEEE Conference on Decision and Control and European Control Conference, 5144–49. Orlando, FL: IEEE. doi:10.1109/CDC.2011.6161081.
  • Veras, J., I. Silva, P. Pinheiro, R. Rabêlo, A. Veloso, F. Borges, and J. Rodrigues. 2018. A multi-objective demand response optimization model for scheduling loads in a home energy management system. Sensors 18 (10):3207. doi:10.3390/s18103207.
  • Wang, J., Y. Jiang, C. Y. Tang, and L. Song. 2022. Development and validation of a second-order thermal network model for residential buildings. Applied Energy 306 (January):118124. doi:10.1016/j.apenergy.2021.118124.
  • Xu, Y., Y. Xu, W. Gao, W. Gao, F. Qian, and Y. Li. 2021. Potential analysis of the attention-based LSTM model in ultra-short-term forecasting of building HVAC energy consumption. Frontiers in Energy Research 9 (August). doi:10.3389/fenrg.2021.730640.
  • Yahia, Z., and A. Pradhan. 2020. Multi-objective optimization of household appliance scheduling problem considering consumer preference and peak load reduction. Sustainable Cities and Society 55 (April):102058. doi:10.1016/j.scs.2020.102058.
  • Zhang, X., W. Shi, B. Yan, A. Malkawi, and N. Li. 2017. Decentralized and distributed temperature control via HVAC systems in energy efficient buildings. arXiv:1702.03308 [Cs], February. http://arxiv.org/abs/1702.03308.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.