760
Views
0
CrossRef citations to date
0
Altmetric
Articles

Multi-scenario Extreme Weather Simulator application to heat waves: Ko’olauloa community resilience hub

ORCID Icon, , , , , & show all
Pages 375-393 | Received 07 Jun 2023, Accepted 16 Oct 2023, Published online: 20 Dec 2023

References

  • Abadie, L. M., A. Chiabai, and M. B. Neumann. 2019. Stochastic diffusion models to describe the evolution of annual heatwave statistics: A three-factor model with risk calculations. The Science of the Total Environment 646:670–84. doi: 10.1016/j.scitotenv.2018.07.158.
  • Adelard, L., T. A. Mara, H. Boyer, and J. C. Gatina. 2012. Elaboration of a new tool for weather data sequences generation. arXiv preprint arXiv:1212.5599. doi: 10.48550/arXiv.1212.5599
  • Aguiar, R., S. Camelo, and H. Goncalves. 1999. Assessing the value of typical meteorological years built from observed and from synthetic data for building thermal simulation. Proceedings of Building Simulation 1999: 6th Conference of IBPSA BS 1999 Kyoto, Japan, September 13–15, Vol. 2. Citeseer, 627–34. doi: 10.26868/25222708.1999.A-27
  • Akkose, G., C. M. Akgul, and I. G. Dino. 2021. Educational building retrofit under climate change and urban heat island effect. Journal of Building Engineering 40 (AUG):102294. doi: 10.1016/j.jobe.2021.102294.
  • ASHRAE. 2017. ANSI/ASHRAE Standard 55-2017, Thermal environmental conditions for human occupancy. ASHRAE Standard, ASHRAE, Atlanta, GA.
  • ASHRAE 189.1. 2009, March. Standard for the design of high-performance, green buildings except low-rise residential buildings. Standard, ASHRAE, Atlanta, GA.
  • Attia, S., R. Levinson, E. Ndongo, P. Holzer, O. Berk Kazanci, S. Homaei, C. Zhang, B. W. Olesen, D. Qi, M. Hamdy, et al. 2021. Resilient cooling of buildings to protect against heat waves and power outages: Key concepts and definition. Energy and Buildings 239:110869. doi: 10.1016/j.enbuild.2021.110869.
  • Azaroff, I. 2023. +Lab Architect PLLC website. https://www.pluslabglobal.com/.
  • Bass, B., and J. New. 2023. How will United States commercial building energy use be impacted by IPCC climate scenarios? Energy 263:125945. doi: 10.1016/j.energy.2022.125945.
  • Bass, B., J. New, and Z. Wade. 2022, November. Future typical meteorological year (fTMY) weather data and climate change impacts to Maricopa county, Arizona. BuildSys’22 Proceedings of the 9th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, November 9–10. Boston, MA: Association for Computing Machinery, 504–7. https://www.osti.gov/servlets/purl/1898988.
  • Bekris, Y., P. C. Loikith, and J. D. Neelin. 2023. Short warm distribution tails accelerate the increase of humid-heat extremes under global warming. Geophysical Research Letters 50 (11):e2022GL102164. doi: 10.1029/2022GL102164.
  • Belcher, S. E., J. N. Hacker, and D. S. Powell. 2005. Constructing design weather data for future climates. Building Services Engineering Research and Technology 26 (1):49–61. doi: 10.1191/0143624405bt112oa.
  • Bianchi, C., and A. D. Smith. 2019. Localized Actual Meteorological Year File Creator (LAF): A tool for using locally observed weather data in building energy simulations. SoftwareX 10:100299. doi: 10.1016/j.softx.2019.100299.
  • Brackney, L., A. Parker, D. Macumber, and K. Benne. 2018. Building energy modeling with OpenStudio: A practical guide for students and professionals. Cham: Springer. doi: 10.1007/978-3-319-77809-9
  • Bre, F., R. M. e Silva Machado, L. K. Lawrie, D. B. Crawley, and R. Lamberts. 2021. Assessment of solar radiation data quality in typical meteorological years and its influence on the building performance simulation. Energy and Buildings 250:111251. doi: 10.1016/j.enbuild.2021.111251.
  • BTO. 2023. Building Technologies Office Future weather project website. https://www.energy.gov/eere/buildings/femy-future-and-extremeweather-data.
  • Cabeza, L. F., and M. Chafer. 2020. Technological options and strategies towards zero energy buildings contributing to climate change mitigation: A systematic review. Energy and Buildings 219 (JUL 15):110009. doi: 10.1016/j.enbuild.2020.110009.
  • Chen, Y., M. Guo, Z. Chen, Z. Chen, and Y. Ji. 2022. Physical energy and data-driven models in building energy prediction: A review. Energy Reports 8:2656–71. doi: 10.1016/j.egyr.2022.01.162.
  • Cohen, J., X. Zhang, J. Francis, T. Jung, R. Kwok, J. Overland, T. J. Ballinger, U. S. Bhatt, H. W. Chen, D. Coumou, et al. 2020. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nature Climate Change 10 (1):20–9. doi: 10.1038/s41558-019-0662-y.
  • CORDEX. 2021. Coordinated Regional Climate Downscaling Experiment (CORDEX) website. https://cordex.org/.
  • Cowan, T., A. Purich, S. Perkins, A. Pezza, G. Boschat, and K. Sadler. 2014. More frequent, longer, and hotter heat waves for Australia in the twenty-first century. Journal of Climate 27 (15):5851–71. doi: 10.1175/JCLI-D-14-00092.1.
  • Crawley, D. B., and L. K. Lawrie. 2023. TMYx weather database. https://climate.onebuilding.org/.
  • D’Agostino, D., D. Parker, I. Epifani, D. Crawley, and L. Lawrie. 2022. How will future climate impact the design and performance of nearly zero energy buildings (NZEBs)? Energy 240:122479. doi: 10.1016/j.energy.2021.122479.
  • De la Pena, L., R. Guo, X. Cao, X. Ni, and W. Zhang. 2022. Accelerating the energy transition to achieve carbon neutrality. Resources Conservation and Recycling 177 (FEB):105957. doi: 10.1016/j.resconrec.2021.105957.
  • De Masi, R. F., A. Gigante, S. Ruggiero, and G. P. Vanoli. 2021. Impact of weather data and climate change projections in the refurbishment design of residential buildings in cooling dominated climate. Applied Energy 303:117584. doi: 10.1016/j.apenergy.2021.117584.
  • DOE. 2023a. EnergyPlus website. Accessed 8/4/2023. https://energyplus.net/.
  • DOE. 2023b. OpenStudio Website. Accessed 8/4/2023. https://http://openstudio.net/.
  • DOE. 2023c. DOE prototype model website. Accessed 8/4/2023. https://www.energycodes.gov/sites/default/files/2020-06/ASHRAE901_RestaurantSitDown.zip.
  • Dores, D., and N. Lautze. 2020. Preliminary assessment of ground-source heat exchangers for cooling in Hawai‘i. Sustainable Energy Technologies and Assessments 37:100579. doi: 10.1016/j.seta.2019.100579.
  • Farah, S., W. Saman, and J. Boland. 2018. Development of robust meteorological year weather data. Renewable Energy.118:343–50. doi: 10.1016/j.renene.2017.11.033.
  • FEMA. 2021a, April. Safe rooms for tornadoes and hurricanes: Guidance for community and residential safe rooms FEMA P-361. Technical Report, FEMA, Washington, DC. https://www.fema.gov/sites/default/files/documents/fema_safe-rooms-for-tornadoes-and-hurricanes_p-361.pdf.
  • FEMA. 2021b, March. Taking shelter from the storm: Building or installing a safe room for your home (includes design plans) FEMA P-320. Technical Report, FEMA, Washington, DC. https://www.fema.gov/sites/default/files/documents/fema_taking-shelter-from-the-storm_p-320.pdf.
  • Fonseca, J. A., I. Nevat, and G. W. Peters. 2020. Quantifying the uncertain effects of climate change on building energy consumption across the United States. Applied Energy 277:115556. doi: 10.1016/j.apenergy.2020.115556.
  • Giambelluca, T. W., X. Shuai, M. L. Barnes, R. J. Alliss, R. J. Longman, T. Miura, Q. Chen, A. G. Frazier, R. G. Mudd, L. Cuo, et al. 2014, February. Evapotranspiration of Hawai‘i. Final report submitted to the U.S. Army Corps of Engineers—Honolulu District, and the Commission on Water Resource Management, State of Hawai‘i. Technical Report. http://evapotranspiration.geography.hawaii.edu/assets/files/PDF/ET%20Project%20Final%20Report.pdf.
  • Grossman-Clarke, S., S. Schubert, T. R. Clarke, and S. L. Harlan. 2014. Extreme summer heat in Phoenix, Arizona (USA) under global climate change (2041-2070). ERDE 145 (1-2):49–61. https://www.die-erde.org/index.php/die-erde/article/view/92/60.
  • HEUB. 2023. Hawai’i Energy Utility Benchmarking data website. https://hawaiienergy.com/for-business/benchmarking-by-facility-type.
  • Hirsch and Associates. 2023. DOE-2 website. http://www.doe2.com/.
  • Hong, Y., S.-Y S. Wang, S.-W. Son, J.-H. Jeong, S.-W. Kim, B. Kim, H. Kim, and J.-H. Yoon. 2023. Arctic-associated increased fluctuations of midlatitude winter temperature in the 1.5° and 2.0° warmer world. NPJ Climate and Atmospheric Science 6 (1). doi: 10.1038/s41612-023-00345-y.
  • Hosseini, M., F. Tardy, and B. Lee. 2018. Cooling and heating energy performance of a building with a variety of roof designs; the effects of future weather data in a cold climate. Journal of Building Engineering 17 (MAY):107–14. doi: 10.1016/j.jobe.2018.02.001.
  • Hausfather, Z. 2018. Explainer: How scientists estimate climate sensitivity. Carbon Brief. https://www.carbonbrief.org/explainer-how-scientistsestimate-climate-sensitivity.
  • IEA. 2019. 2019 global status report for buildings and construction: Toward a zero emissions, efficient and resilient buildings and construction sector. Technical Report. https://www.iea.org/reports/global-status-report-for-buildings-and-construction-2019.
  • Keellings, D., and H. Moradkhani. 2020. Spatiotemporal evolution of heat wave severity and coverage across the United States. Geophysical Research Letters 47 (9):e2020GL087097. doi: 10.1029/2020GL087097.
  • Koci, J., V. Koci, J. Madera, and R. Cerny. 2019. Effect of applied weather data sets in simulation of building energy demands: Comparison of design years with recent weather data. Renewable & Sustainable Energy Reviews 100:22–32. doi: 10.1016/j.rser.2018.10.022.
  • Lee, C.-C., M. Maron, and A. Mostafavi. 2022. Community-scale big data reveals disparate impacts of the Texas winter storm of 2021 and its managed power outage. Humanities and Social Sciences Communications 9 (1):335. doi: 10.1057/s41599-022-01353-8.
  • Lokeshgupta, B., and K. Ravivarma. 2023. Coordinated smart home energy sharing with a centralized neighbourhood energy management. Sustainable Cities and Society 96:104642. doi: 10.1016/j.scs.2023.104642.
  • Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, et al., eds. 2021. Technical summary. In Climate change 2021: The Physical science basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change, 135–144. Cambridge, UK: Cambridge University Press. doi: 10.1017/9781009157896.002.
  • Mathew, P., L. Sanchez, S. Lee, and T. Walter. 2021. Assessing the energy resilience of office buildings: Development and testing of a simplified metric for real estate stakeholders. Buildings 11 (3):96. doi: 10.3390/buildings11030096.
  • Meehl, G. A., C. Tebaldi, S. Tilmes, J.-F. Lamarque, S. Bates, A. Pendergrass, and D. Lombardozzi. 2018. Future heat waves and surface ozone. Environmental Research Letters 13 (6):064004. doi: 10.1088/1748-9326/aabcdc.
  • Munankarmi, P., J. Maguire, S. P. Balamurugan, M. Blonsky, D. Roberts, and X. Jin. 2021. Community-scale interaction of energy efficiency and demand flexibility in residential buildings. Applied Energy 298:117149. doi: 10.1016/j.apenergy.2021.117149.
  • NOAA. 2021a. Global Historical Climatology Network daily (GHCNd) version 3.28-upd-2021100417, National Oceanic and Atmospheric Association. https://www.ncei.noaa.gov/data/daily-summaries/access/.
  • NOAA. 2021b. U.S. climate normals for 1991-2020. https://www.ncei.noaa.gov/data/normals-hourly/1991-2020/access/.
  • OpenStudio Coalition. 2023. OpenStudio Coalition website. https://openstudiocoalition.org/.
  • O’Neill, B. C., E. Kriegler, K. L. Ebi, E. Kemp-Benedict, K. Riahi, D. S. Rothman, B. J. van Ruijven, D. P. van Vuuren, J. Birkmann, K. Kok, et al. 2017. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change 42:169–80. doi: 10.1016/j.gloenvcha.2015.01.004.
  • Plaga, L. S., and V. Bertsch. 2023. Methods for assessing climate uncertainty in energy system models—A systematic literature review. Applied Energy 331:120384. doi: 10.1016/j.apenergy.2022.120384.
  • Ragone, F., J. Wouters, and F. Bouchet. 2018. Computation of extreme heat waves in climate models using a large deviation algorithm. Proceedings of the National Academy of Sciences of the United States of America 115 (1):24–9. doi: 10.1073/pnas.1712645115.
  • Rahif, R., D. Amaripadath, and S. Attia. 2021. Review on time-integrated overheating evaluation methods for residential buildings in temperate climates of Europe. Energy and Buildings 252:111463. doi: 10.1016/j.enbuild.2021.111463.
  • Rastogi, P., and M. Andersen. 2015. Embedding stochasticity in building simulation through synthetic weather files. Proceedings of Building Simulation 2015: 14th Conference of IBPSA, Vol. 14, Building Simulation, Hyderabad, India, December 7–9, 963–70. doi: 10.26868/25222708.2015.2321
  • Rastogi, P., and M. Andersen. 2016. “Incorporating climate change predictions in the analysis of weather-based uncertainty.” ASHRAE and IBPSA-USA SimBuild 2016–Building Performance Modeling Conference. IBPSA-USA, ASHRAE. https://publications.ibpsa.org/conference/paper/?id=simbuild2016_C024.
  • Rastogi, P., and M. E. Khan. 2021. Planning for a changing climate without accurate predictions. In Climate adaptation and resilience across scales, 35–49. Routledge. doi: 10.4324/9781003030720
  • Rastogi, P., M. E. Khan, and M. Andersen. 2022. Evaluating the suitability of regression-based emulators of building performance in practice: A test suite. Journal of Building Performance Simulation 15 (4):488–506. doi: 10.1080/19401493.2021.1969430.
  • Roth, A., D. Goldwasser, and A. Parker. 2016. There’s a measure for that!. Energy and Buildings 117:321–31. doi: 10.1016/j.enbuild.2015.09.056.
  • Semenov, M. A., and E. M. Barrow. 2002. LARS-WG: A stochastic weather generator for use in climate impact studies. User Manual Herts UK. http://resources.rothamsted.ac.uk/sites/default/files/groups/mas-models/download/LARS-WG-Manual.pdf.
  • Siu, C. Y., and Z. Liao. 2020. Is building energy simulation based on TMY representative: A comparative simulation study on doe reference buildings in Toronto with typical year and historical year type weather files. Energy and Buildings 211:109760. doi: 10.1016/j.enbuild.2020.109760.
  • Sun, K., M. Specian, and T. Hong. 2020. Nexus of thermal resilience and energy efficiency in buildings: A case study of a nursing home. Building and Environment 177:106842. doi: 10.1016/j.buildenv.2020.106842.
  • Sylla, M. B., F. Giorgi, P. M. Ruti, S. Calmanti, and A. Dell’Aquila. 2011. The impact of deep convection on the West African summer monsoon climate: A regional climate model sensitivity study. Quarterly Journal of the Royal Meteorological Society 137 (659):1417–30. doi: 10.1002/qj.853.
  • Tablo. 2023. Tablo hemodialysis unit web page. Accessed June 6, 2023. https://www.outsetmedical.com/tablo.
  • Trimble. 2023. SketchUp website. http://www.sketchup.com.
  • Villa, D. 2023. Multi-scenario Extreme Weather Simulator GitHub repository. https://github.com/sandialabs/MEWS.
  • Villa, D. L. 2021. Institutional heat wave analysis by building energy modeling fleet and meter data. Energy and Buildings 237:110774. doi: 10.1016/j.enbuild.2021.110774.
  • Villa, D. L., J. Pablo Carvallo, C. Bianchi, and S. Hoon Lee. 2022. Multi-scenario extreme weather simulator application to heat waves. Proceedings of the Building Performance Analysis Conference and SimBuild Co-Organized by ASHRAE and IBPSA-USA, Chicago, IL, September 14–16, 49–58. doi: 10.26868/25746308.2022.C006.
  • Villa, D. L., and J. E. Quiroz. 2023. Reducing microgrid availability to reduce costs for coastal Puerto Rican communities. Science and Technology for the Built Environment 29 (9):871–86. doi: 10.1080/23744731.2023.2253087.
  • Villa, D. L., T. Schostek, K. Govertsen, and M. Macmillan. 2023. A stochastic model of future extreme temperature events for infrastructure analysis. Environmental Modelling & Software 163:105663. doi: 10.1016/j.envsoft.2023.105663.
  • WeatherSpark. 2023. Climate and average weather year round in Hau’ula Hawaii. Accessed September 5, 2023. https://weatherspark.com/y/137/Average-Weather-in-Hau%E2%80%98ula-Hawaii-United-States-Year-Round.
  • White, R. H., S. Anderson, J. F. Booth, G. Braich, C. Draeger, C. Fei, C. D. G. Harley, S. B. Henderson, M. Jakob, C.-A. Lau, et al. 2023. The unprecedented Pacific Northwest heatwave of June 2021. Nature Communications 14 (1):727. doi: 10.1038/s41467-023-36289-3.
  • Wilcox, S., and W. Marion. 2008, April. User’s manual for TMY3 data sets. National Renewable Laboratories, Boulder, CO. Technical Report NREL/TP581-43156. https://www.nrel.gov/docs/fy08osti/43156.pdf.
  • WWA. 2023. Extreme heat in North America, Europe and China in July 2023 made much more likely by climate change. World Weather Attribution Article July 25, 2023. Accessed July 31, 2023. https://www.worldweatherattribution.org/extreme-heat-in-north-america-europe-and-china-in-july-2023-made-much-more-likely-by-climate-change/.
  • Yang, Y., K. Javanroodi, and V. M. Nik. 2021. Climate change and energy performance of European residential building stocks—A comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment. Applied Energy 298:117246. doi: 10.1016/j.apenergy.2021.117246.
  • Yassaghi, H., N. Mostafavi, and S. Hoque. 2019. Evaluation of current and future hourly weather data intended for building designs: A Philadelphia case study. Energy and Buildings 199:491–511. doi: 10.1016/j.apenergy.2020.115655. doi: 10.1016/j.enbuild.2019.07.016
  • Yassaghi, H., P. L. Gurian, and S. Hoque. 2020. Propagating downscaled future weather file uncertainties into building energy use. Applied Energy 278:115655. doi: 10.1016/j.apenergy.2020.115655
  • Zeng, Z., R. Muehleisen, J. Kim, J. New, B. Bass, P. Rastogi, J. Wang, Y. Hu, and D. Villa. 2023. A critical anlaysis of future weather data for building and energy modeling. In Pres. https://www.researchgate.net/profile/Haochen-Tan-3/publication/372411307_A_critical_analysis_of_future_weather_data_for_building_and_energy_modeling/links/64b56de38de7ed28baa48cd8/A-critical-analysis-of-future-weather-data-for-building-and-energy-modeling.pdf?origin=publication_detail.
  • Zhang, C., O. B. Kazanci, S. Attia, R. Levinson, and S. H. Lee. 2023. IEA EBC Annex 80—Dynamic simulation guideline for the performance testing of resilient cooling strategies: Version 2. Technical Report, DCE Technical Reports No. 306. https://backend.orbit.dtu.dk/ws/portalfiles/portal/267004362/Dynamic_simulation_guideline_DCE_report_No.299.pdf.
  • Zhang, C., O. B. Kazanci, R. Levinson, P. Heiselberg, B. W. Olesen, G. Chiesa, B. Sodagar, Z. Ai, S. Selkowitz, M. Zinzi, et al. 2021. Resilient cooling strategies—A critical review and qualitative assessment. Energy and Buildings 251:111312. doi: 10.1016/j.enbuild.2021.111312.
  • Zhuang, C., R. Choudhary, and A. Mavrogianni. 2023. Uncertainty-based optimal energy retrofit methodology for building heat electrification with enhanced energy flexibility and climate adaptability. Applied Energy 341:121111. doi: 10.1016/j.apenergy.2023.121111.