140
Views
0
CrossRef citations to date
0
Altmetric
Articles

Exploring thermal comfort in rural houses of Chhattisgarh state, India: A comprehensive survey and adaptive model analysis

, ORCID Icon, &
Pages 523-545 | Received 22 Apr 2023, Accepted 09 Jan 2024, Published online: 25 Feb 2024

References

  • ASHRAE. 2013. ANSI/ASHRAE Standard 55, Thermal environmental conditions for human occupancy. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers.
  • ASHRAE. 2016. ANSI/ASHRAE Standard 55, Thermal environmental conditions for human occupancy. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers.
  • Auliciems, A. 1981. Towards a psycho-physiological model of thermal perception. International Journal of Biometeorology 25 (2):109–22. doi:10.1007/BF02184458
  • Berger, X. 1988. The pumping effect of clothing. International Journal of Ambient Energy 9 (1):37–46. doi:10.1080/01430750.1988.9675909
  • Brager, G. S., and R. J. De Dear. 1998. Thermal adaptation in the built environment: A literature review. Energy and Buildings 27 (1):83–96. doi:10.1016/S0378-7788(97)00053-4
  • Brager, G., G. Paliaga, and R. De Dear. 2004. Operable windows, personal control and occupant comfort. ASHRAE Transactions 110:17–35.
  • Bureau of Energy Efficiency. 2017. Energy Conservation Building Code 2017. ECBC 2017 148:148–62.
  • Chhattisgarh Environment Conservation Board. https://web.archive.org/web/20180813230036/http://www.chtenvis.nic.in/Climate.html
  • De Dear, R. J., G. S. Brager, J. Reardon, J., and F. Nicol. 1998. Developing an adaptive model of thermal comfort and preference/discussion. ASHRAE transactions 104:145.
  • Dhaka, S., J. Mathur, G. Brager, and A. Honnekeri. 2015. Assessment of thermal environmental conditions and quantification of thermal adaptation in naturally ventilated buildings in composite climate of India. Building and Environment 86:17–28. doi:10.1016/j.buildenv.2014.11.024
  • Dhaka, S., J. Mathur, A. Wagner, G. D. Agarwal, and V. Garg. 2013. Evaluation of thermal environmental conditions and thermal perception at naturally ventilated hostels of undergraduate students in composite climate. Building and Environment 66:42–53. doi:10.1016/j.buildenv.2013.04.015
  • Du, C., B. Li, W. Yu, H. Liu, C. Li, and R. Yao. 2019. Moisture in clothing and its transient influence on human thermal responses through clothing microenvironment in cold environments in winter. Building and Environment 150:1–12. doi:10.1016/j.buildenv.2018.12.066
  • Fanger, P. O. 1973. Assessment of man’s thermal comfort in practice. British Journal of Industrial Medicine 30 (4):313–24. doi:10.1136/oem.30.4.313
  • Feriadi, H., and N. H. Wong. 2004. Thermal comfort for naturally ventilated houses in Indonesia. Energy and Buildings 36 (7):614–26. doi:10.1016/j.enbuild.2004.01.011
  • Hammel, H. T., and J. B. Pierce. 1968. Regulation of internal body temperature. Annual Review of Physiology 30 (1):641–710. doi:10.1146/annurev.ph.30.030168.003233
  • Humphreys, M. A., and J. F. Nicol. 2002. The validity of ISO-PMV for predicting comfort votes in every-day thermal environments. Energy and Buildings 34 (6):667–84. doi:10.1016/S0378-7788(02)00018-X
  • Indraganti, M. 2010a. Adaptive use of natural ventilation for thermal comfort in Indian apartments. Building and Environment 45 (6):1490–507. doi:10.1016/j.buildenv.2009.12.013
  • Indraganti, M. 2010b. Behavioural adaptation and the use of environmental controls in summer for thermal comfort in apartments in India. Energy and Buildings 42 (7):1019–25. doi:10.1016/j.enbuild.2010.01.014
  • Indraganti, M. 2010c. Thermal comfort in naturally ventilated apartments in summer: Findings from a field study in Hyderabad, India. Applied Energy 87 (3):866–83. doi:10.1016/j.apenergy.2009.08.042
  • Indraganti, M. 2010d. Using the adaptive model of thermal comfort for obtaining indoor neutral temperature: Findings from a field study in Hyderabad, India. Building and Environment 45 (3):519–36. doi:10.1016/j.buildenv.2009.07.006
  • Indraganti, M., R. Ooka, and H. B. Rijal. 2013. Field investigation of comfort temperature in Indian office buildings: A case of Chennai and Hyderabad. Building and Environment 65:195–214. doi:10.1016/j.buildenv.2013.04.007
  • Indraganti, M., R. Ooka, H. B. Rijal, and G. S. Brager. 2014. Adaptive model of thermal comfort for offices in hot and humid climates of India. Building and Environment 74:39–53. doi:10.1016/j.buildenv.2014.01.002
  • Ithurria, S., and B. Dubertret. 1998. ISO 7726. Ergonomics of the thermal environment—Instrument for measuring physical quantities: International Organization for Standardization.
  • Jiao, Y., H. Yu, T. Wang, Y. An, and Y. Yu. 2017. The relationship between thermal environments and clothing insulation for elderly individuals in Shanghai, China. Journal of Thermal Biology 70 (Pt A):28–36. doi:10.1016/j.jtherbio.2017.07.002
  • Jing, S., B. Li, M. Tan, and H. Liu. 2013. Impact of relative humidity on thermal comfort in a warm environment. Indoor and Built Environment 22 (4):598–607. doi:10.1177/1420326X12447614
  • Kumar, S., M. K. Singh, R. Kukreja, S. K. Chaurasiya, and V. K. Gupta. 2019. Comparative study of thermal comfort and adaptive actions for modern and traditional multi-storey naturally ventilated hostel buildings during monsoon season in India. Journal of Building Engineering 23:90–106. doi:10.1016/j.jobe.2019.01.020
  • Kumar, S., M. K. Singh, V. Loftness, J. Mathur, and S. Mathur. 2016. Thermal comfort assessment and characteristics of occupant’s behaviour in naturally ventilated buildings in composite climate of India. Energy for Sustainable Development 33:108–21. doi:10.1016/j.esd.2016.06.002
  • Ličina, V. F., T. Cheung, H. Zhang, R. de Dear, T. Parkinson, E. Arens, C. Chun, S. Schiavon, M. Luo, G. Brager, et al. 2018. Development of the ASHRAE global thermal comfort database II. Building and Environment 142:502–12. doi:10.1016/j.buildenv.2018.06.022
  • Malik, J., and R. Bardhan. 2020. Energy target pinch analysis for optimising thermal comfort in low-income dwellings. Journal of Building Engineering 28:101045. doi:10.1016/j.jobe.2019.101045
  • Malik, J., and R. Bardhan. 2023. A localized adaptive comfort model for free-running low-income housing in Mumbai, India. Energy and Buildings 281:112756. doi:10.1016/j.enbuild.2022.112756
  • Manu, S., Y. Shukla, R. Rawal, L. E. Thomas, and R. De Dear. 2016. Field studies of thermal comfort across multiple climate zones for the subcontinent: India Model for Adaptive Comfort (IMAC). Building and Environment 98:55–70. doi:10.1016/j.buildenv.2015.12.019
  • Manu, S., Y. Shukla, R. Rawal, L. E. Thomas, R. De Dear, M. Dave, and M. Vakharia. 2014. Assessment of air velocity preferences and satisfaction for naturally ventilated office buildings in India. In Passive and Low Energy Architecture (PLEA) Annual International Conference, CEPT University Press, CEPT University, Ahmedabad, 16–18 December.
  • Mishra, A. K., and M. Ramgopal. 2014. Thermal comfort in undergraduate laboratories—A field study in Kharagpur, India. Building and Environment 71:223–32. doi:10.1016/j.buildenv.2013.10.006
  • Mishra, A. K., and M. Ramgopal. 2015. An adaptive thermal comfort model for the tropical climatic regions of India (Köppen climate type A). Building and Environment 85:134–43. doi:10.1016/j.buildenv.2014.12.006
  • Nakagawa, A., H. Ikeda, Y. Maeda, and T. Nakaya. 2020. A survey of high school students’ clothing in classroom. Journal of Building Engineering 32:101469. doi:10.1016/j.jobe.2020.101469
  • Netam, N., S. Sanyal, and S. Bhowmick. 2017. Thermal performance analysis to assess inhabitant comfort inside LIG houses in Chhattisgarh. International Journal of Theoretical and Applied Mechanics 12 (3):613–22. doi:10.37622/IJTAM/12.3.2017.613-622
  • Netam, N., S. Sanyal, and S. Bhowmick. 2018. A PMV-PPD model based study of thermal comfort in Low-Income Group house in Chhattisgarh. MATEC Web of Conferences 172:06006. doi:10.1051/matecconf/201817206006
  • Nicol, F. 2004. Adaptive thermal comfort standards in the hot–humid tropics. Energy and Buildings 36 (7):628–37. doi:10.1016/j.enbuild.2004.01.016
  • Nicol, J. F. 1974. An analysis of some observations of thermal comfort in Roorkee, India and Baghdad, Iraq. Annals of Human Biology 1 (4):411–26. doi:10.1080/03014467400000441
  • Nicol, J. F., and M. A. Humphreys. 2002. Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and Buildings 34 (6):563–72. doi:10.1016/S0378-7788(02)00006-3
  • Nicol, J. F., I. A. Raja, A. Allaudin, and G. N. Jamy. 1999. Climatic variations in comfortable temperatures: The Pakistan projects. Energy and Buildings 30 (3):261–79. doi:10.1016/S0378-7788(99)00011-0
  • Nicol, J. F., and S. Roaf. 2005. Post-occupancy evaluation and field studies of thermal comfort. Building Research & Information 33 (4):338–46. doi:10.1080/09613210500161885
  • Rajasekar, E., U. Anupama, and R. Venkateswaran. 2014. Thermal comfort beyond building design—An investigation in naturally ventilated residential apartments in a hot–dry climate. Advances in Building Energy Research 8 (2):196–215. doi:10.1080/17512549.2013.865553
  • Sharma, M. R., and S. Ali. 1986. Tropical summer index—A study of thermal comfort of Indian subjects. Building and Environment 21 (1):11–24. doi:10.1016/0360-1323(86)90004-1
  • Singh, M. K., S. Mahapatra, and S. K. Atreya. 2009. Bioclimatism and vernacular architecture of north-east India. Building and Environment 44 (5):878–88. doi:10.1016/j.buildenv.2008.06.008
  • Singh, M. K., S. Mahapatra, and S. K. Atreya. 2010. Thermal performance study and evaluation of comfort temperatures in vernacular buildings of North-East India. Building and Environment 45 (2):320–9. doi:10.1016/j.buildenv.2009.06.009
  • Singh, M. K., S. Mahapatra, and S. K. Atreya. 2011. Adaptive thermal comfort model for different climatic zones of North-East India. Applied Energy 88 (7):2420–8. doi:10.1016/j.apenergy.2011.01.019
  • Singh, S., and P. S. Chani. 2018. Thermal comfort analysis of Indian subjects in multi-storeyed apartments: An adaptive approach in composite climate. Indoor and Built Environment 27 (9):1216–46. doi:10.1177/1420326X17712797
  • Su, X., Z. Wang, F. Zhou, L. Duanmu, Y. Zhai, Z. Lian, B. Cao, Y. Zhang, X. Zhou, and J. Xie. 2022. Comfortable clothing model of occupants and thermal adaption to cold climates in China. Building and Environment 207:108499. doi:10.1016/j.buildenv.2021.108499
  • Thapa, S. 2020. Thermal comfort in high altitude Himalayan residential houses in Darjeeling, India—An adaptive approach. Indoor and Built Environment 29 (1):84–100. doi:10.1177/1420326X19853877
  • Udaykumar, A., E. Rajasekar, and R. Venkateswaran. 2015. Thermal comfort characteristics in naturally ventilated, residential apartments in a hot-dry climate of India. Indoor and Built Environment 24 (1):101–15. doi:10.1177/1420326X13504120
  • Vellei, M., M. Herrera, D. Fosas, and S. Natarajan. 2017. The influence of relative humidity on adaptive thermal comfort. Building and Environment 124:171–85. doi:10.1016/j.buildenv.2017.08.005
  • Zhang, H., E. Arens, and W. Pasut. 2011. Air temperature thresholds for indoor comfort and perceived air quality. Building Research & Information 39 (2):134–44. doi:10.1080/09613218.2011.552703

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.