0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Outdoor testbeds for studies on performance of building envelopes: review and recommendations

, &
Received 24 Jan 2024, Accepted 07 Jun 2024, Published online: 05 Aug 2024

References

  • Abuku, M., B. Blocken, and S. Roels. 2009. Moisture response of building facades to wind-driven rain: Field measurements compared with numerical simulations. Journal of Wind Engineering and Industrial Aerodynamics 97 (5–6):197–207. doi:10.1016/j.jweia.2009.06.006.
  • Agency, I. E. 2013. Technology Roadmap Energy Efficient Building Envelopes. OECD 68.
  • Akram, M. W., M. Hasannuzaman, E. Cuce, and P. M. Cuce. 2023. Global technological advancement and challenges of glazed window, facade system and vertical greenery-based energy savings in buildings: A comprehensive review. Energy and Built Environment 4 (2):206–26. doi:10.1016/j.enbenv.2021.11.003.
  • Alcamo, G., and M. De Lucia. 2014. A new test cell for the evaluation of thermo-physical performance of facades building components. International Journal of Sustainable Energy 33 (4):954–62. doi:10.1080/14786451.2013.796943.
  • Aleo, F., A. Pennisi, S. Scalia, and F. Simone. 2001. Optical and energetic performances of an electrochromic window tested in a “PASSYS” cell. Electrochimica Acta 46 (13–14):2243–9. doi:10.1016/S0013-4686(01)00367-X.
  • Alkhatib, H., P. Lemarchand, B. Norton, and D. T. J. O'Sullivan. 2021. Deployment and control of adaptive building facades for energy generation, thermal insulation, ventilation and daylighting: A review. Applied Thermal Engineering 185:116331. doi:10.1016/j.applthermaleng.2020.116331.
  • Alonso, C., I. Oteiza, J. García-Navarro, and F. Martín-Consuegra. 2016. Energy consumption to cool and heat experimental modules for the energy refurbishment of façades. Three case studies in Madrid. Energy and Buildings 126:252–62. doi:10.1016/j.enbuild.2016.04.034.
  • Ango, S. B. E. 2011. Contribution au stockage d’énergie thermique en bâtiment: développement d’un système actif à matériaux à changement de phase. Doctoral dissertation, Arts et Métiers ParisTech.
  • Arranz, B., L. Ruiz-Valero, M. P. González, and S. V. Sánchez. 2020. Comprehensive experimental assessment of an industrialized modular innovative active glazing and heat recovery system. Energy 212:118748. doi:10.1016/j.energy.2020.118748.
  • Ascione, F., N. Bianco, F. de Rossi, R. F. De Masi, and G. P. Vanoli. 2016. Concept, design and energy performance of a net zero-energy building in Mediterranean climate. Procedia Engineering 169:26–37. doi:10.1016/j.proeng.2016.10.004.
  • Ascione, F., M. Borrelli, R. F. De Masi, F. de Rossi, and G. P. Vanoli. 2019. A framework for NZEB design in Mediterranean climate: Design, building and set-up monitoring of a lab-small villa. Solar Energy.184:11–29. doi:10.1016/j.solener.2019.03.083.
  • Ascione, F., R. F. De Masi, F. de Rossi, S. Ruggiero, and G. P. Vanoli. 2016. MATRIX, a multi activity test-room for evaluating the energy performances of ‘building/HVAC’ systems in Mediterranean climate: Experimental set-up and CFD/BPS numerical modeling. Energy and Buildings 126:424–46. doi:10.1016/j.enbuild.2016.05.044.
  • Ascione, F., R. F. De Masi, A. Gigante, and G. P. Vanoli. 2022. Resilience to the climate change of nearly zero energy-building designed according to the EPBD recast: Monitoring, calibrated energy models and perspective simulations of a Mediterranean nZEB living lab. Energy and Buildings 262:112004. doi:10.1016/j.enbuild.2022.112004.
  • Assimakopoulos, M. N., A. Tsangrassoulis, M. Santamouris, and G. Guarracino. 2007. Comparing the energy performance of an electrochromic window under various control strategies. Building and Environment 42 (8):2829–34. doi:10.1016/j.buildenv.2006.04.004.
  • Auzeby, M., S. Wei, C. Underwood, J. Tindall, C. Chen, H. Ling, and R. Buswell. 2016. Effectiveness of using phase change materials on reducing summer overheating issues in UK residential buildings with identification of influential factors. Energies 9 (8):605. doi:10.3390/en9080605.
  • Baker, P. H., and H. A. L. Van Dijk. 2008. PASLINK and dynamic outdoor testing of building components. Building and Environment 43 (2):143–51. doi:10.1016/j.buildenv.2006.10.009.
  • Bakker, L. G., E. C. M. Hoes-van Oeffelen, R. Loonen, and J. L. Hensen. 2014. User satisfaction and interaction with automated dynamic facades: A pilot study. Building and Environment 78:44–52. doi:10.1016/j.buildenv.2014.04.007.
  • Balali, A., and A. Valipour. 2020. Identification and selection of building facade’s smart materials according to sustainable development goals. Sustainable Materials and Technologies 26: E 00213. doi:10.1016/j.susmat.2020.e00213.
  • Beausoleil-Morrison, I., and U. Arndt, Systems, I.E.C. in B.& C.S.P.A. 42–S. of B.-I.F.C. and O.C. 2008. An experimental and simulation-based investigation of the performance of small-scale fuel cell and combustion-based cogeneration devices serving residential buildings: Final report of Annex 42 of the International Energy Agency’s Energy Conservation in Buildings and Community Systems Programme Ottawa. ON, Canada: Natural Resources Canada.
  • Benedetti, M., L. Maierová, C. Cajochen, A. Motamed, M. Münch, and J. L. Scartezzini. 2019. Impact of dynamic lighting control on light exposure, visual comfort and alertness in office users. Journal of Physics: Conference Series 1343 (1):012160. doi:10.1088/1742-6596/1343/1/012160.
  • Berardi, U., and S. Soudian. 2023. Outdoor test facilities for the experimental performance evaluation of construction materials and systems: The BeTOP case. Case Studies in Construction Materials 18: E 01920. doi:10.1016/j.cscm.2023.e01920.
  • Beyer, D., and N. Kelly. 2008. Modelling the behaviour of domestic micro-cogeneration under different operating regimes and with variable thermal buffering. In Micro-Cogen 2008, 1st International Conference on Micro-Cogeneration Technologies and Applications.
  • Bian, Y., and T. Luo. 2017. Investigation of visual comfort metrics from subjective responses in China: A study in offices with daylight. Building and Environment 123:661–71. doi:10.1016/j.buildenv.2017.07.035.
  • Bianco, L., P. Schneuwly, E. Wurtz, and A. Brun. 2017. Design of a new full-scale facility for building envelope test: FACT (FACade Tool). Energy Procedia.111:256–66. doi:10.1016/j.egypro.2017.03.027.
  • Bigot, D. 2011. Contribution à l’étude du couplage énergétique enveloppe/système dans le cas de parois complexes photovoltaïques (pc-pv). Doctoral dissertation, Université de la Réunion.
  • Bosqued, A., S. Palero, C. San Juan, S. Soutullo, R. Enríquez, J. A. Ferrer, J. Martí, J. Heras, J. D. Guzmán, and M. J. Jiménez. 2006. Arfrisol, bioclimatic architecture and solar cooling project. In Proceedings of PLEA2006 Passive Low Energy Archit Geneva, Switzerland.
  • Bozonnet, E., M. Doya, and F. Allard. 2011. Cool roofs impact on building thermal response: A French case study. Energy and Buildings 43 (11):3006–12. doi:10.1016/j.enbuild.2011.07.017.
  • Bröthaler, T., M. Rennhofer, D. Brandl, T. Mach, A. Heinz, G. Újvári, H. C. Lichtenegger, and H. Rennhofer. 2021. Performance analysis of a facade-integrated photovoltaic powered cooling system. Sustainability 13 (8):4374. doi:10.3390/su13084374.
  • Buxbaum, C., O. Pankratz, M. Schorer, and W. Thalhammer. 2008. Habitable basement concepts made in timber construction—assessment on the durability of walls and floor slabs made of solid cross-laminated timber boards. In Proceedings of the 10th World Conference on Timber Engineering, 2–5. Miyazaki, Japan.
  • Calama-González, C. M., Á. L. León-Rodríguez, and R. Suárez. 2022. Assessing thermal comfort in the Mediterranean social housing stock through test cells: Comparison of double-skin, externally insulated and non-retrofitted facades. Case Studies in Thermal Engineering 38:102369. doi:10.1016/j.csite.2022.102369.
  • Castilla, M., J. D. Álvarez, M. Berenguel, F. Rodríguez, J. L. Guzmán, and M. Pérez. 2011. A comparison of thermal comfort predictive control strategies. Energy Building 43:2737–46. doi:10.1016/j.enbuild.2011.06.030.
  • Castilla, M., J. D. Álvarez, M. G. Ortega, and M. R. Arahal. 2013. Neural network and polynomial approximated thermal comfort models for HVAC systems. Building and Environment 59:107–15. doi:10.1016/j.buildenv.2012.08.012.
  • Cattarin, G., F. Causone, A. Kindinis, and L. Pagliano. 2016. Outdoor test cells for building envelope experimental characterisation – a literature review. Renewable and Sustainable Energy Reviews 54:606–25. doi:10.1016/j.rser.2015.10.012.
  • Cattarin, G., L. Pagliano, F. Causone, A. Kindinis, F. Goia, S. Carlucci, and C. Schlemminger. 2018. Empirical validation and local sensitivity analysis of a lumped-parameter thermal model of an outdoor test cell. Building and Environment 130:151–61. doi:10.1016/j.buildenv.2017.12.029.
  • Causone, F., A. Tatti, M. Pietrobon, F. Zanghirella, and L. Pagliano. 2019. Yearly operational performance of a nZEB in the Mediterranean climate. Energy and Buildings 198:243–60. doi:10.1016/j.enbuild.2019.05.062.
  • Chen, B., Y. Liu, X. Song, R. Zhao, and J. Sun. 2015. Study on thermal performance of house with closed loop solar air heating coupled TCM (in Chinese). Building Science 31 (08):122–6.
  • Chen, Q., B. Li, X. Liu, and X. Li. 2015. Experimental research on the thermal behavior of the living wall system in hot-Summer and cold winter areas (in Chinese). Dyn. Eco-City Green Building (01):120–4.
  • Chica, J. A., I. Apraiz, P. Elguezabal, M. O. Rrips, V. Sánchez, and B. Tellado. 2011. KUBIK: Open building approach for the construction of an unique experimental facility aimed to improve energy efficiency in buildings. Open House International 36 (1):63–72. doi:10.1108/OHI-01-2011-B0008.
  • Ciampi, G., Y. Spanodimitriou, M. Scorpio, A. Rosato, and S. Sibilio. 2021. Energy performance of PVC-Coated polyester fabric as novel material for the building envelope: Model validation and a refurbishment case study. Journal of Building Engineering 41:102437. doi:10.1016/j.jobe.2021.102437.
  • Clarke, J. A., J. Cockroft, S. Conner, J. W. Hand, N. J. Kelly, R. Moore, T. O’Brien, and P. Strachan. 2002. Simulation-assisted control in building energy management systems. Energy and Buildings 34 (9):933–40. doi:10.1016/S0378-7788(02)00068-3.
  • Clarke, J. A., C. M. Johnstone, N. J. Kelly, R. C. McLean, J. A. Anderson, N. J. Rowan, and J. E. Smith. 1999. A technique for the prediction of the conditions leading to mould growth in buildings. Building and Environment 34 (4):515–21. doi:10.1016/S0360-1323(98)00023-7.
  • Colclough, S., O. Kinnane, N. Hewitt, and P. Griffiths. 2018. Investigation of nZEB social housing built to the Passive House standard. Energy and Buildings 179:344–59. doi:10.1016/j.enbuild.2018.06.069.
  • Čurpek, J., and M. Čekon. 2020. Climate response of a BiPV façade system enhanced with latent PCM-based thermal energy storage. Renewable Energy 152:368–84. doi:10.1016/j.renene.2020.01.070.
  • Curpek, J., J. Hraska, and M. Cekon. 2018. Multi-functional ventilated BiPV façade concept coupled with PCM BOOK Ext. 47–50, Coimbra.
  • Daemei, A. B., E. Shafiee, A. A. Chitgar, and S. Asadi. 2021. Investigating the thermal performance of green wall: Experimental analysis, deep learning model, and simulation studies in a humid climate. Building and Environment 205:108201. doi:10.1016/j.buildenv.2021.108201.
  • De Dear, R., A. Nathwani, C. Cândido, and D. Cabrera. 2013. The next generation of experientially realistic lab-based research: The University of Sydney’s Indoor Environmental Quality Laboratory. Architectural Science Review 56 (1):83–92. doi:10.1080/00038628.2012.745807.
  • Dehra, H. 2019. Integrated acoustic and thermo-fluid insulation modeling of an airflow window with a photovoltaic solar wall. In Integrated Acoustic and Thermo-Fluid Insulation Modeling of an Airflow Window with a Photovoltaic Solar Wall. Presented at the Building Simulation 2019, Kalyanova and Heiselberg, Rome, Italy, 2–9.
  • Desta, T. Z., J. Langmans, and S. Roels. 2011. Experimental data set for validation of heat, air and moisture transport models of building envelopes. Building and Environment 46 (5):1038–46. doi:10.1016/j.buildenv.2010.11.002.
  • Dimoudi, A., A. Androutsopoulos, and S. Lykoudis. 2004. Experimental work on a linked, dynamic and ventilated, wall component. Energy and Buildings 36 (5):443–53. doi:10.1016/j.enbuild.2004.01.048.
  • Domínguez-Torres, C.-A., R. Suárez, A. L. León-Rodríguez, and A. Domínguez-Delgado. 2022. Experimental validation of a dynamic numeric model to simulate the thermal behavior of a facade. Applied Thermal Engineering 204:117686. doi:10.1016/j.applthermaleng.2021.117686.
  • Elguezabal, P., A. Lopez, J. M. Blanco, and J. A. Chica. 2020. CFD model-based analysis and experimental assessment of key design parameters for an integrated unglazed metallic thermal collector façade. Renewable Energy 146:1766–80. doi:10.1016/j.renene.2019.07.151.
  • Enríquez, R., M. J. Jiménez, and M. del Rosario Heras. 2012. Analysis of a solar office building at the South of Spain through simulation model calibration. Energy Procedia 30:580–9. doi:10.1016/j.egypro.2012.11.068.
  • EPFL. 2020. Controlled Environments for Living Lab Studies (CELLS). https://www.epfl.ch/labs/hobel/home-2/facilities/controlled-environments-for-living-lab-studies-cells/.
  • Erba, S., L. Pagliano, S. C. Shandiz, and M. Pietrobon. 2019. Energy consumption, thermal comfort and load match: Study of a monitored nearly Zero Energy Building in Mediterranean climate. Presented at the IOP Conference Series: Materials Science and Engineering, IOP Publishing 609 (6):062026.
  • Favoino, F., M. Doya, R. C. G. M. Loonen, F. Goia, C. Bedon, and F. Babich. 2018. Building performance simulation and characterisation of adaptive facades – Adaptive facade network. TU Delft Open.
  • Favre, B., and B. Peuportier. 2014. Application of dynamic programming to study load shifting in buildings. Energy and Buildings 82:57–64. doi:10.1016/j.enbuild.2014.07.018.
  • Feldmeier, F. 2006. Klimabelastung und Lastverteilung bei Mehrscheiben‐Isolierglas. Stahlbau 75 (6):467–78. doi:10.1002/stab.200610050.
  • Fensterseifer, P., E. Gabriel, R. Tassi, D. G. A. Piccilli, and B. Minetto. 2022. A year-assessment of the suitability of a green façade to improve thermal performance of an affordable housing. Ecological Engineering 185:106810. doi:10.1016/j.ecoleng.2022.106810.
  • Garay, R., J. A. Chica, I. Apraiz, J. M. Campos, B. Tellado, A. Uriarte, and V. Sanchez. 2015. Energy efficiency achievements in 5 years through experimental research in KUBIK. Energy Procedia.78:865–70. doi:10.1016/j.egypro.2015.11.009.
  • García-Gáfaro, C., A. Erkoreka, C. Escudero-Revilla, I. Flores, J. Martínez-Fontecha, and J. M. Sala Lizarraga. 2012. Experience gained in the thermal characterization of building components by using PASLINK test cells. In 5th International Building Physics Conference (IBPC), Kyoto.
  • García-Gáfaro, C., C. Escudero-Revilla, I. Flores-Abascal, A. Erkoreka-González, and K. Martín-Escudero. 2020. Dynamical edge effect factor determination for building components thermal characterization under outdoor test conditions in a PASLINK test cell: A methodological proposal. Energy and Buildings 210:109741. doi:10.1016/j.enbuild.2019.109741.
  • García-Gáfaro, C., C. Escudero-Revilla, I. Flores-Abascal, J. M. Hidalgo-Betanzos, and A. Erkoreka-González. 2022. A photovoltaic forced ventilated façade (PV-FVF) as heat source for a heat pump: Assessing its energetical profit in nZEB buildings. Energy and Buildings 261:111979. doi:10.1016/j.enbuild.2022.111979.
  • Goethals, K., M. Delghust, G. Flamant, M. De Paepe, and A. Janssens. 2012. Experimental investigation of the impact of room/system design on mixed convection heat transfer. Energy and Buildings 49:542–51. doi:10.1016/j.enbuild.2012.03.017.
  • Goia, F., L. Finocchiaro, and A. Gustavsen. 2015. The ZEB Living Laboratory at the Norwegian University of Science and Technology: A zero emission house for engineering and social science experiments. In Proceedings of 7PHN Sustainable Cities and Buildings.
  • Goia, F., C. Schlemminger, and A. Gustavsen. 2017. The ZEB Test Cell Laboratory. A facility for characterization of building envelope systems under real outdoor conditions. Energy Procedia.132:531–6. doi:10.1016/j.egypro.2017.09.718.
  • Gouy-Pailler, C., H. Najmeddine, A. Mouraud, F. Suard, C. Spitz, A. Jay, and P. Maréchal. 2011. Distance and similarity measures for sensors selection in heavily instrumented buildings: Application to the INCAS platform. Proceedings of CIB W78-W102 : 26–8.
  • Guichard, S., F. Miranville, D. Bigot, and H. Boyer. 2014. A thermal model for phase change materials in a building roof for a tropical and humid climate: Model description and elements of validation. Energy and Buildings 70:71–80. doi:10.1016/j.enbuild.2013.11.079.
  • Gullbrekken, L., T. Kvande, and B. Time. 2017. Ventilated wooden roofs: Influence of local weather conditions-measurements. Energy Procedia.132:777–82. doi:10.1016/j.egypro.2017.10.029.
  • Hahne, E., and R. Pfluger. 1996. Improvements on PASSYS test cells. Solar Energy.58 (4-6):239–46. doi:10.1016/S0038-092X(96)00080-1.
  • Hauser, G., H. Sinnesbichler, and M. Eberl. 2010. Nächtliche Kühlung mittels eines modifizierten Solarkollektors (Kombikollektor).
  • Heidari Matin, N., and A. Eydgahi. 2022. Technologies used in responsive facade systems: A comparative study. Intelligent Buildings International 14 (1):54–73. doi:10.1080/17508975.2019.1577213.
  • Heras, J., S. Palero, R. Enríquez, A. Bosqued, C. S. Juan, J. A. Ferrer, S. Soutullo, J. D. Guzmán, M. J. Jiménez, and J. Martí. 2006. Spain tries to find the formula to save 80% energy in office buildings, In 27th AIVC Conference, Lyon, France.
  • Heras, M. R., J. A. Ferrer, H. Granados, L. Zarzalejo, M. J. San Isidro, M. J. Jimenez, J. Guzman, X. Travier, J. C. Escribano, and E. Martin. 2001. ARCHINT contract JOR3-CT98-7048. Publications final report.
  • Heusler, I. 2011. Erarbeitung einer vereinfachten Berechnungsmethode für Doppelfassaden für die Integration in die deutsche EPBD-Energieeffizienzbewertungsmethode DIN V 18599 (Bewertungsmethode GDF): Abschlussbericht.
  • Ibrahim, M., P. H. Biwole, P. Achard, E. Wurtz, and G. Ansart. 2015. Building envelope with a new aerogel-based insulating rendering: Experimental and numerical study, cost analysis, and thickness optimization. Applied Energy.159:490–501. doi:10.1016/j.apenergy.2015.08.090.
  • Iqbal, A., A. Afshari, H. Wigö, and P. Heiselberg. 2015. Discharge coefficient of centre-pivot roof windows. Building and Environment 92:635–43. doi:10.1016/j.buildenv.2015.05.034.
  • ISO 19467. 2017. Thermal performance of windows and doors—Determination of solar heat gain coefficient using solar simulator, I.O.f. Standardization, Editor. 2017 Geneva, Switzerland.
  • Jaber, S., and S. Ajib. 2011. Optimum, technical and energy efficiency design of residential building in Mediterranean region. Energy and Buildings 43 (8):1829–34. doi:10.1016/j.enbuild.2011.03.024.
  • Janssens, A. 2016. Inventory of full scale test facilities for evaluation of building energy performances, International Energy Agency, EBC Annex 58, Reliable building energy performance characterisation based on full scale dynamic measurements KULeuven.
  • Janssens, A., and H. Hens. 2007. Effects of wind on the transmission heat loss in duo-pitched insulated roofs: A field study. Energy and Buildings 39 (9):1047–54. doi:10.1016/j.enbuild.2006.10.016.
  • Jensen, S. Ø., C. H. Christensen, D. M. Jørgensen, and J. Huet. 2016. Smart meter case study. Danish.
  • Jia, H., X. Pang, and P. Haves. 2018. Experimentally-determined characteristics of radiant systems for office buildings. Applied Energy.221:41–54. doi:10.1016/j.apenergy.2018.03.121.
  • Jiménez, M. J., and H. Madsen. 2008. Models for describing the thermal characteristics of building components. Building and Environment 43 (2):152–62. doi:10.1016/j.buildenv.2006.10.029
  • Jiménez, M. J., B. Porcar, and M. R. Heras. 2009. Application of different dynamic analysis approaches to the estimation of the building component U value. Building and Environment 44 (2):361–7. doi:10.1016/j.buildenv.2008.03.010.
  • Jiménez, M. J., B. Porcar, and M. R. Heras. 2008. Estimation of building component UA and gA from outdoor tests in warm and moderate weather conditions. Solar Energy.82 (7):573–87. doi:10.1016/j.solener.2008.02.013.
  • Jin, Q., and G. Meng. 2020. Studies on building envelope performance using outdoor test cells (in Chinese). Period Architecture (03):58–63. doi:10.13717/j.cnki.ta.2020.03.011.
  • Judkoff, R., and J. Neymark. 2006. Model validation and testing: The methodological foundation of ASHRAE Standard 140 (No. NREL/CP-550-40360). Golden, CO: National Renewable Energy Lab. (NREL).
  • Kalyanova, O., and P. Heiselberg. 2008. Experimental set-up and full-scale measurements in ‘the Cube’. Department of Civil Engineering, Aalborg University. DCE Technical reports No. 34.
  • Kalyanova, O., P. Heiselberg, C. Felsmann, H. Poirazis, P. Strachan, and A. Wijsman. 2009. An empirical validation of building simulation software for modelling of double-skin facade (DSF). Building Simulation 2009 (11):1107–14.
  • Karthick, A., M. Manokar Athikesavan, M. K. Pasupathi, N. Manoj Kumar, S. S. Chopra, and A. Ghosh. 2020. Investigation of inorganic phase change material for a semi-transparent photovoltaic (STPV) module. Energies 13 (14):3582. doi:10.3390/en13143582.
  • Kelly, N. J., and J. Cockroft. 2011. Analysis of retrofit air source heat pump performance: Results from detailed simulations and comparison to field trial data. Energy and Buildings 43 (1):239–45. doi:10.1016/j.enbuild.2010.09.018.
  • Kelly, N. J., P. G. Tuohy, and A. D. Hawkes. 2014. Performance assessment of tariff-based air source heat pump load shifting in a UK detached dwelling featuring phase change-enhanced buffering. Applied Thermal Engineering 71 (2):809–20. doi:10.1016/j.applthermaleng.2013.12.019.
  • Kersken, M. 2021. Method for the climate-independent determination of the solar heat gain coefficient (SHGC; g-value) of transparent façade and membrane constructions from in situ measurements. Energy and Buildings 239:110866. doi:10.1016/j.enbuild.2021.110866.
  • Kersken, M., A. Kaufmann, K. Moritz, W. Krah, and F. Goecke. 2021. Building physics of Etfe-foil systems. In X International Conference on Textile Composites and Inflatable Structures.
  • Klems, J., and H. Keller. 1986. Measurement of single and double glazing thermal performance under realistic conditions using the Mobile Window Thermal Test (MoWiTT) Facility. In Solar Energy Engineering, LBL-22149.
  • Klems, J. H. 1992. Method of measuring nighttime U-values using the mobile window thermal test (MoWiTT) facility CA, USA: Lawrence Berkeley Laboratory.
  • Klems, J. H. 1988. Measurement of fenestration net energy performance: Considerations leading to development of the Mobile Window Thermal Test (MoWitt) facility. Journal of Solar Energy Engineering 110 (3):208–16. doi:10.1115/1.3268259.
  • Ko, W. H., S. Schiavon, H. Zhang, L. T. Graham, G. Brager, I. Mauss, and Y.-W. Lin. 2020a. The impact of a view from a window on thermal comfort, emotion, and cognitive performance. Building and Environment 175:106779. doi:10.1016/j.buildenv.2020.106779.
  • Ko, Y., H. Oh, H. Hong, and J. Min. 2020b. Energy consumption verification of SPD smart window, controllable according to solar radiation in South Korea. Energies 13 (21):5643. doi:10.3390/en13215643.
  • Korsnes, M., T. Berker, and R. Woods. 2018. Domestication, acceptance and zero emission ambitions: Insights from a mixed method, experimental research design in a Norwegian Living Lab. Energy Research & Social Science 39:226–33. doi:10.1016/j.erss.2017.11.004.
  • Kotsiris, G., A. Androutsopoulos, E. Polychroni, and P. A. Nektarios. 2012. Dynamic U-value estimation and energy simulation for green roofs. Energy and Buildings 45:240–9. doi:10.1016/j.enbuild.2011.11.005.
  • Kunwar, N., K. S. Cetin, U. Passe, X. Zhou, and Y. Li. 2019. Full-scale experimental testing of integrated dynamically-operated roller shades and lighting in perimeter office spaces. Solar Energy.186:17–28. doi:10.1016/j.solener.2019.04.069.
  • La Ferla, G. 2020a. 5 Computational performance prediction of radiant glass. In Building performance simulation and characterisation of adaptive facades – Adaptive facade network. TU Delft Open.
  • La Ferla, G., C. A. A. Román, and J. R. Calzada. 2020b. Radiant glass façade technology: Thermal and comfort performance based on experimental monitoring of outdoor test cells. Building and Environment 182:107075. doi:10.1016/j.buildenv.2020.107075.
  • Laboratory for Intelligent Building Technology. 2011. https://www.th-rosenheim.de/en/die-hochschule/labore/labore-ang/rosenheim-technology-centre-for-energy-and-buildings-roteg/laboratory-for-intelligent-building-technology?
  • Langmans, J., and S. Roels. 2015. Experimental analysis of cavity ventilation behind rainscreen cladding systems: A comparison of four measuring techniques. Building and Environment 87:177–92. doi:10.1016/j.buildenv.2015.01.030.
  • Leal, V., and E. Maldonado. 2008. The role of the PASLINK test cell in the modelling and integrated simulation of an innovative window. Building and Environment 43 (2):217–27. doi:10.1016/j.buildenv.2006.10.025.
  • Lee, E. S., D. L. DiBartolomeo, J. Klems, M. Yazdanian, and S. E. Selkowitz. 2005. Monitored energy performance of electrochromic windows controlled for daylight and visual comfort. ASHRAE Transactions 112 (2).
  • Lee, E. S., D. L. DiBartolomeo, and S. E. Selkowitz. 2006. Daylighting control performance of a thin-film ceramic electrochromic window: Field study results. Energy and Buildings 38 (1):30–44. doi:10.1016/j.enbuild.2005.02.009.
  • Lee, E. S., C. Gehbauer, B. E. Coffey, A. McNeil, M. Stadler, and C. Marnay. 2015. Integrated control of dynamic facades and distributed energy resources for energy cost minimization in commercial buildings. Solar Energy.122:1384–97. doi:10.1016/j.solener.2015.11.003.
  • Lee, L. S. H., and C. Y. Jim. 2019. Energy benefits of green-wall shading based on novel-accurate apportionment of short-wave radiation components. Applied Energy.238:1506–18. doi:10.1016/j.apenergy.2019.01.161.
  • Lee, S. H., and T. Hong. 2019. Validation of an inverse model of zone air heat balance. Building and Environment 161:106232. doi:10.1016/j.buildenv.2019.106232.
  • Liang, R., Y. Sun, Y. Wu, and R. Wilson. 2019. Comprehensive assessment of advanced solar facade: thermal, optical and economic assessment. In IOP Conference Series: Materials Science and Engineering, IOP Publishing, 012003.
  • Lin, Z., and Y. Song. 2021. DSF prototype design for lightweight prefabricated building oriented to the surface energy regulation and control based on a comparative experimental platform in cold zone of China (in Chinese). Journal of BEE 49 (01):10–20.
  • Loutzenhiser, P. G., H. Manz, S. Carl, H. Simmler, and G. M. Maxwell. 2008. Empirical validations of solar gain models for a glazing unit with exterior and interior blind assemblies. Energy and Buildings 40 (3):330–40. doi:10.1016/j.enbuild.2007.02.034.
  • Loutzenhiser, P. G., G. M. Maxwell, and H. Manz. 2007. An empirical validation of the daylighting algorithms and associated interactions in building energy simulation programs using various shading devices and windows. Energy 32 (10):1855–70. doi:10.1016/j.energy.2007.02.005.
  • Lu, S., Q. Meng, L. Zhang, K. Zhong, and L. Shao. 2019. Effect of the inner wall surface radiation rate on the indoor thermal comfort. Journal of Building Energy Efficiency 47:98–104.
  • Luible, A., S. Gosztonyi, and S. Attia, eds. 2018. Facade 2018 – Adaptive! Lucerne, Switzerland: Lucerne University of Applied Sciences and Arts.
  • Luna-Navarro, A., and M. Overend. 2021. Design, construction and validation of MATELab: A novel outdoor chamber for investigating occupant-facade interaction. Building and Environment 203:108092. doi:10.1016/j.buildenv.2021.108092.
  • Mahdavi, A., A. Mohammadi, E. Kabir, and L. Lambeva. 2008. Occupants’ operation of lighting and shading systems in office buildings. Journal of Building Performance Simulation 1 (1):57–65. doi:10.1080/19401490801906502.
  • Mandilaras, I., I. Atsonios, G. Zannis, and M. Founti. 2014. Thermal performance of a building envelope incorporating ETICS with vacuum insulation panels and EPS. Energy and Buildings 85:654–65. doi:10.1016/j.enbuild.2014.06.053.
  • Mantesi, E., K. Mourkos, C. Hopfe, R. McLeod, P. Vatougiou, M. Kersken, and P. Strachan. 2019. Deploying building simulation to enhance the experimental design of a full-scale empirical validation project. In 16th International Conference of the International Building Performance Simulation Association, Building Simulation, 4538–45. International Building Performance Simulation Association.
  • Manz, H. 2004. Total solar energy transmittance of glass double façades with free convection. Energy and Buildings 36 (2):127–36. doi:10.1016/j.enbuild.2003.10.003.
  • Maref, W., M. M. Armstrong, and M. Z. Rousseau. 2010. Field monitoring of energy-retrofitted wall assembly in cold climate: Impact of the vapour permeance of exterior retrofit insulation on the flow of moisture in wood-frame wall.
  • Maref, W., M. M. Armstrong, H. Saber, M. Rousseau, G. Ganapathy, M. Nicholls, and M. C. Swinton. 2012. Field energy performance of an insulating concrete form (ICF) wall. Canada: National Research Council Canada.
  • Maref, W., B. Ouazia, J. Reardon, and M. Rousseau. 2007. Ventilation and wall research house. In Performance of Exterior Envelope of Whole Buildings X Conference, Clearwater, USA.
  • Marszal, A. J., S. J. Thomas, O. K. Larsen, and P. Heiselberg. 2009. Empirical validation of simple calculation method for assessment of energy performance in double-skin façade building. In ROOMVENT 2009: Proceedings of the 11th International ROOMVENT Conference, 1173–80.
  • Mejri, O., E. P. Del Barrio, and N. Ghrab-Morcos. 2011. Energy performance assessment of occupied buildings using model identification techniques. Energy and Buildings 43 (2–3):285–99. doi:10.1016/j.enbuild.2010.09.010.
  • Misiopecki, C., S. Grynning, and A. Gustavsen. 2023. Thermal improvements of box-window using shading attachments. Hot-box measurements. Developments in the Built Environment 16:100185. doi:10.1016/j.dibe.2023.100185.
  • Mlakar, J., and J. Štrancar. 2011. Overheating in residential passive house: Solution strategies revealed and confirmed through data analysis and simulations. Energy and Buildings 43 (6):1443–51. doi:10.1016/j.enbuild.2011.02.008.
  • Mohammadi, S., A. Weersink, J. V. ′t Ende, and C. Struck. 2022. Rotatable Smart TinyLab, a platform for testing integrated façades and indoor climate. IOP Conference Series: Earth and Environmental Science 1085 (1):012055. doi:10.1088/1755-1315/1085/1/012055.
  • Murphy, M. D., P. D. O’Sullivan, G. Carrilho Da Graça, and A. O’Donovan. 2021. Development, calibration and validation of an internal air temperature model for a naturally ventilated nearly zero energy building: comparison of model types and calibration methods. Energies 14 (4):871. doi:10.3390/en14040871.
  • National Build Energy Retrofit Test-bed (NBERT). 2013. https://messo.mtu.ie/nbert.
  • Neya, I., D. Yamegueu, Y. Coulibaly, A. Messan, and A.-N. Ouedraogo. 2021. Impact of insulation and wall thickness in compressed earth buildings in hot and dry tropical regions. Journal of Building Engineering 33:101612. doi:10.1016/j.jobe.2020.101612.
  • Nicolini, E., F. Olivieri, M. L. Germanà, G. Marcon, M. Chiodi, and L. Olivieri. 2023. Comparative analysis of the thermal insulation performance of a façade enclosure integrated by vegetation under simultaneous windy and rainy climatic conditions. Building and Environment 239:110386. doi:10.1016/j.buildenv.2023.110386.
  • Norge, S. 2000. Thermal performance of windows and doors–Determination of thermal transmittance by hot box method–Part 1: Complete windows and doors (ISO 12567-1: 2000). Nor. Stand. NS-EN ISO 12567–1.
  • Ochs, F., D. Siegele, G. Dermentzis, and W. Feist. 2015. Prefabricated timber frame façade with integrated active components for minimal invasive renovations. Energy Procedia.78:61–6. doi:10.1016/j.egypro.2015.11.115.
  • O’Donovan, A., P. D. O’Sullivan, and M. D. Murphy. 2017. A field study of thermal comfort performance for a slotted louvre ventilation system in a low energy retrofit. Energy and Buildings 135:312–23. doi:10.1016/j.enbuild.2016.11.049.
  • Palero, S., C. San Juan, R. Enríquez, J. A. Ferrer, S. Soutullo, J. Martí, A. Bosqued, J. Heras, J. D. Guzmán, and M. J. Jiménez. 2006. Thorough study of a proposal to improve the thermal behaviour of a bioclimatic building. In 23rd Conference on Passive and Low Energy Architecture, Geneva, Switzerland.
  • Pang, X., C. Duarte, P. Haves, and F. Chuang. 2018. Testing and demonstration of model predictive control applied to a radiant slab cooling system in a building test facility. Energy and Buildings 172:432–41. doi:10.1016/j.enbuild.2018.05.013.
  • Price, B. A., and T. F. Smith. 2000. Description of the Iowa Energy Center Energy Resource Station: Facility update III Iowa City, IA: University of Iowa.
  • Qian, Y., Y. Guan, H. Yang, and Y. Gao. 2016. Experimental study on the change of heat and humidity state of new building envelope structures. Building Science 32:79–86.
  • Qian, Y., Guang, Y. Yang, and H. Gao. 2016. Experimental study on thermal and psychrometric state variations for external building envelope of new building. Building Science 32 (08):79–86.
  • Ridley, I., J. Bere, A. Clarke, Y. Schwartz, and A. Farr. 2014. The side by side in use monitored performance of two passive and low carbon Welsh houses. Energy and Buildings 82:13–26. doi:10.1016/j.enbuild.2014.06.038.
  • Ridley, I., A. Clarke, J. Bere, H. Altamirano, S. Lewis, M. Durdev, and A. Farr. 2013. The monitored performance of the first new London dwelling certified to the passive house standard. Energy and Buildings 63:67–78. doi:10.1016/j.enbuild.2013.03.052.
  • Roels, S., P. Bacher, G. Bauwens, H. Madsen, and M. J. Jiménez. 2015. Characterising the actual thermal performance of buildings: Current results of common exercises performed in the framework of the IEA EBC Annex 58-Project. Energy Procedia.78:3282–7. doi:10.1016/j.egypro.2015.11.726.
  • Roels, S., and M. Deurinck. 2011. The effect of a reflective underlay on the global thermal behaviour of pitched roofs. Building and Environment 46 (1):134–43. doi:10.1016/j.buildenv.2010.07.005.
  • Rojas, J., G. Barrios, G. Huelsz, R. Tovar, and S. Jalife-Lozano. 2016. Thermal performance of two envelope systems: Measurements in non air-conditioned outdoor test cells and simulations. Journal of Building Physics 39 (5):452–60. doi:10.1177/1744259115591993.
  • Romano, R., P. Gallo, and A. Donato. 2021. Smart materials for adaptive façade systems. The case study of SELFIE components. In Sustainability in energy and buildings 2020, 285–96. Singapore: Springer.
  • Rouault, F., D. Bruneau, P. Sébastian, and J. Lopez. 2014. Experimental investigation and modelling of a low temperature PCM thermal energy exchange and storage system. Energy and Buildings 83:96–107. doi:10.1016/j.enbuild.2014.05.026.
  • Ruiz-Valero, L., J. Faxas-Guzmán, J. Ferreira, V. González, N. Guerrero, and F. Ramirez. 2021. Thermal performance of facades based on experimental monitoring of outdoor test cells in tropical climate. Civil Engineering Journal 7 (12):1982–97. doi:10.28991/cej-2021-03091773.
  • Saelens, D., S. Roels, and H. Hens. 2004. The inlet temperature as a boundary condition for multiple-skin facade modelling. Energy and Buildings 36 (8):825–35. doi:10.1016/j.enbuild.2004.01.005.
  • Safizadeh, M., M. Schweiker, and A. Wagner. 2018. Experimental evaluation of radiant heating ceiling systems based on thermal comfort criteria. Energies 11 (11):2932. doi:10.3390/en11112932.
  • Sage-Lauck, J. S., and D. J. Sailor. 2014. Evaluation of phase change materials for improving thermal comfort in a super-insulated residential building. Energy and Buildings 79:32–40. doi:10.1016/j.enbuild.2014.04.028.
  • Schaefle, C., F. Feldmeier, and C. Lux. 2012. Investigation of the total solar energy transmittance on building-integrated, semitransparent photovoltaic modules with and without extraction of electrical power; Untersuchung des Gesamtenergiedurchlassgrades an gebaeudeintegrierbaren, teiltransparenten Photovoltaik-Modulen bei elektrischer Leistungsentnahme. Bauphysik 34:153–6. doi:10.1002/BAPI.201200019.
  • Schweiker, M., S. Brasche, W. Bischof, M. Hawighorst, K. Voss, and A. Wagner. 2012. Development and validation of a methodology to challenge the adaptive comfort model. Building and Environment 49:336–47. doi:10.1016/j.buildenv.2011.08.002.
  • Schweiker, M., S. Brasche, M. Hawighorst, W. Bischof, and A. Wagner. 2014. Presenting LOBSTER, an innovative climate chamber, and the analysis of the effect of a ceiling fan on the thermal sensation and performance under summer conditions in an office-like setting. In Windsor Conference, Counting the Cost of Comfort in a Changing World, vol. 8.
  • Serra, V., F. Zanghirella, and M. Perino. 2010. Experimental evaluation of a climate façade: Energy efficiency and thermal comfort performance. Energy and Buildings 42 (1):50–62. doi:10.1016/j.enbuild.2009.07.010.
  • Siegele, D., F. Ochs, and W. Feist. n.d. Modelling and simulation of façade integrated active components with Matlab/Simulink. In Fifth German-Austrian IBPSA Conference, Aachen, Germany, BauSIM, 198–205.
  • Silva, P. d., M. G. d Almeida, and P. Mendonça. 2006, November. Achieving thermal inertia in lightweight constructions. In Climamed Congress Lyon, France, 20–21.
  • Silva, P., P. Mendonça, L. Bragança, and M. Almeida. 2006. Sustainable test cell: Performance evaluation. In Proceedings of Healthy Buildings, 4–8.
  • Simmler, H., and B. Binder. 2008. Experimental and numerical determination of the total solar energy transmittance of glazing with venetian blind shading. Building and Environment 43 (2):197–204. doi:10.1016/j.buildenv.2006.10.011.
  • Simmler, H., B. Binder, and R. Vonbank. 2000. Wärmelasten transparenter Bauteile und Sonnenschutzsysteme Schlussbericht BFE/EMPA.
  • Sinnesbichler, H. 2007. Weiterentwicklung und Evaluierung von Technologien und von Bewertungsmethoden zur Steigerung der Gesamtenergieeffizienz von Gebäuden (EnEff06). IBP-Ber. WTB-02-2007.
  • Sinnesbichler, H., and M. Eberl. 2009. Temporärer Wärmeschutz durch Rollläden mit Infrarot reflektierender Oberflächenbeschichtung Fraunhofer-Inst. für Bauphysik.
  • Souayfane, F., P. H. Biwole, and F. Fardoun. 2018. Thermal behavior of a translucent superinsulated latent heat energy storage wall in summertime. Applied Energy.217:390–408. doi:10.1016/j.apenergy.2018.02.119.
  • Soudian, S., and U. Berardi. 2022. Experimental performance evaluation of a climate-responsive ventilated building façade. Journal of Building Engineering 61:105233. doi:10.1016/j.jobe.2022.105233.
  • Soutullo, S., R. Enriquez, C. San Juan, J. A. Ferrer, and M. R. Heras. 2010. Energy balances of four office buildings in different locations in Spain. The 6th IBPSA Canada conference, Winnipeg, Canada.
  • Spitz, C., L. Mora, E. Wurtz, and A. Jay. 2012. Practical application of uncertainty analysis and sensitivity analysis on an experimental house. Energy and Buildings 55:459–70. doi:10.1016/j.enbuild.2012.08.013.
  • Stec, W. J., and A. H. C. V. Paassen. 2005. Symbiosis of the double skin façade with the HVAC system. Energy and Buildings 37 (5):461–9. doi:10.1016/j.enbuild.2004.08.007.
  • Stec, W. J., and A. H. C. van Paassen. 2002. Validation of the simulation models of the double skin facade. In International Conference, Hong Kong, 1181–8. Elsevier.
  • Stierli, M., V. Kulić, and T. B. Klarin. 2018. Toward a concrete Utopia: Architecture in Yugoslavia, 1948–1980, p. 228. New York: Museum of Modern Art.
  • Strachan, P., J. Hand, K. Svehla, I. Heusler, and M. Kersken. 2015. A full-scale empirical validation study applied to thermal simulation programs. In Building Simulation 2015 Conference, Hyderabad, India.
  • Strachan, P. A., and L. Vandaele. 2008. Case studies of outdoor testing and analysis of building components. Building and Environment 43 (2):129–42. doi:10.1016/j.buildenv.2006.10.043.
  • Tahersima, F. 2012. An integrated control system for heating and indoor climate applications. PhD thesis, Aalborg University.
  • Van Dijk, H. A. L., and G. P. Van der Linden. 1993. The PASSYS method for testing passive solar components. Building and Environment 28 (2):115–26. doi:10.1016/0360-1323(93)90045-5.
  • Walsh, B., B. Urban, and S. Herkel. 2009. Innovating for better buildings: An opportunity disguised as a meltdown: Nth Power and Fraunhofer USA, October. http://cse.fraunhofer.org/pressand-media/press-coverage/nth-power-and-fraunhofer-ce.
  • Wang, Q. 2011. The research on coupled heat and moisture transfer characteristics of bamboo structure wall (in Chinese). Master thesis, Hunan University.
  • Wienold, J., and J. Christoffersen. 2006. Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras. Energy and Buildings 38 (7):743–57. doi:10.1016/j.enbuild.2006.03.017.
  • Wienold, J., and J. Christoffersen. 2005. Towards a new daylight glare rating. Lux Europa, Berlin, 157–61.
  • Xiong, J., and A. Tzempelikos. 2016. Model-based shading and lighting controls considering visual comfort and energy use. Solar Energy.134:416–28. doi:10.1016/j.solener.2016.04.026.
  • Yang, S., M. P. Wan, B. F. Ng, T. Zhang, S. Babu, Z. Zhang, W. Chen, and S. Dubey. 2018. A state-space thermal model incorporating humidity and thermal comfort for model predictive control in buildings. Energy and Buildings 170:25–39. doi:10.1016/j.enbuild.2018.03.082.
  • Yao, W. 2010. Study on thermal responsive performance of residential buildings with WSAC (in Chinese). Master thesis, Dalian University of Technology.
  • Zhang, Y., L. Zhang, and Q. Meng. 2022. Dynamic heat transfer model of vertical green façades and its co-simulation with a building energy modelling program in hot-summer/warm-winter zones. Journal of Building Engineering 58:105008. doi:10.1016/j.jobe.2022.105008.