8,149
Views
32
CrossRef citations to date
0
Altmetric
Review Articles

Recent progress in perovskite-based photodetectors: the design of materials and structures

, , , , , & show all
Article: 1592709 | Received 14 Jan 2019, Accepted 27 Feb 2019, Published online: 31 Mar 2019

References

  • Konstantatos G, Sargent EH. Nanostructured materials for photon detection. Nat Nanotechnol. 2010;5:282.
  • Baeg K-J, Binda M, Natali D, et al. Organic Light Detectors: photodiodes and Phototransistors. Adv Mater. 2013;25:4267.
  • Koppens FHL, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol. 2014;9:780.
  • Vuuren RDJ, Armin A, Pandey AK, et al. Organic Photodiodes: the Future of Full Color Detection and Image Sensing. Adv Mater. 2016;28:4766.
  • Wang H, Kim DH. Perovskite-based photodetectors: materials and devices. Chem Soc Rev. 2017;46:5204.
  • Dou L, Yang Y, You J, et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun. 2014;5:5404.
  • Sun H, Lei T, Tian W, et al. Self-powered, flexible, and solution-processable perovskite photodetector based on low-cost carbon cloth. Small. 2017;13:1701042.
  • Hu X, Zhang X, Liang L, et al. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv Funct Mater. 2014;24:7373.
  • Fu Y, Song Q, Lin T, et al. High performance photomultiplication perovskite photodetectors with PC60BM and NPB as the interlayers. Org Eletron. 2017;51:200.
  • Kojima A, Teshima K, Shirai Y, et al. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Chem Soc. 2009;131:6050.
  • Liu M, Johnston MB, Snaith HJ. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature. 2013;501:395.
  • Eperon GE, Burlakov VM, Docampo P, et al. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv Funct Mater. 2014;24:151.
  • Zhou H, Chen Q, Li G, et al. Interface engineering of highly efficient perovskite solar cells. Science. 2014;345:542.
  • Jeon NJ, Noh JH, Kim YC, et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater. 2014;13:897.
  • Hao F, Stoumpos CC, Cao DH, et al. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat Photonics. 2014;8:489.
  • Jeon NJ, Na H, Jung EH, et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy. 2018;3:682.
  • Song J, Li J, Li X, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater. 2015;27:7162.
  • Song J, Li J, Xu L, et al. Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs. Adv Mater. 2018;30:1800764.
  • Song J, Fang T, Li J, et al. Organic–inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%. Adv Mater. 2018;30:1805409.
  • Han B, Cai B, Shan Q, et al. Stable, efficient red perovskite light‐emitting diodes by (α, δ)‐CsPbI3 phase engineering. Adv Funct Mater. 2018;28:1804285.
  • Dong Y, Zou Y, Song J, et al. Recent progress of metal halide perovskite photodetectors. J Mater Chem C. 2017;5:11369.
  • Xue J, Gu Y, Shan Q, et al. Constructing mie-scattering porous interface-fused perovskite films to synergistically boost light harvesting and carrier transport. Angew Chem Int Edit. 2017;56:5232.
  • Xue J, Zhu Z, Xu X, et al. All inkjet-printed amperometric multiplexed biosensors based on nanostructured conductive hydrogel electrodes. Nano Lett. 2018;18:7628.
  • Wang Y, Li X, Song J, et al. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Adv Mater. 2015;27:7101.
  • Wang Y, Li X, Zhao X, et al. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Lett. 2016;16:448.
  • Tan Z-K, Moghaddam RS, Lai ML, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol. 2014;9:687.
  • Cho H, Jeong S-H, Park M-H, et al. The Pluto system: initial results from its exploration by New Horizons. Science. 2015;350:1222.
  • Li G, Tan Z-K, Di D, et al. Nearly exclusive growth of small diameter semiconducting single-wall carbon nanotubes from organic chemistry synthetic end-cap molecules. Nano Lett. 2015;15:2640.
  • Zhang X, Liu H, Wang W, et al. Semiconducting nanowire-based optoelectronic fibers. Adv Mater. 2017;29:1606405.
  • Wang N, Cheng L, Ge R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat Photon. 2016;10:699.
  • Lin K, Xing J, Quan LN, et al. Author correction: choosing the future of Antarctica. Nature. 2018;562:245.
  • Cao Y, Wang N, Tian H, et al. Author correction: choosing the future of Antarctica. Nature. 2018;562:249.
  • Li T, Liu M, Li Q, et al. Hybrid photodetector based on CsPbBr3 perovskite nanocrystals and PC71BM fullerene derivative. Chem Phys Lett. 2018;699:208.
  • Qin L, Wu L, Kattel B, et al. Using bulk heterojunctions and selective electron trapping to enhance the responsivity of perovskite-graphene photodetectors. Adv Funct Mater. 2017;27:1704173.
  • Chun DH, Choi YJ, In YJ, et al. Shell-induced Ostwald ripening: simultaneous structure, composition, and morphology transformations during the creation of hollow iron oxide nanocapsules. ACS Nano. 2018;12:8564.
  • Li J, Xu L, Wang T, et al. 50‐fold EQE improvement up to 6.27% of solution‐processed all‐Inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv Mater. 2017;3:1603885.
  • Song J, Cui Q, Li J, et al. Ultralarge all-inorganic perovskite bulk single crystal for high-performance visible-infrared dual-modal photodetectors. Adv Optical Mater. 2017;5:1700157.
  • Xiao J, Yang Y, Xu X, et al. J Mater Chem A. 2015;3:5289.
  • Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol. 2013;8:497.
  • Li J, Ma J, Ge Q, et al. Microscopic investigation of grain boundaries in organolead halide perovskite solar cells. ACS Appl Mater Interfaces. 2015;7:28518.
  • Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science. 2015;347:519.
  • Xu J, Buin A, Ip AH, et al. Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes. Nat Commun. 2015;6:7081.
  • Conings B, Drijkoningen J, Gauquelin N, et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv Energy Mater. 2015;5:1500477.
  • Shao Y, Fang Y, Li T, et al. Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy Environ Sci. 2016;9:1752.
  • Son D-Y, Lee J-W, Choi YJ, et al. Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nat Energy. 2016;1:16081.
  • Asuo IM, Gedamu D, Ka I, et al. High-performance pseudo-halide perovskite nanowire networks for stable and fast-response photodetector. Nano Energy. 2018;51:324.
  • Deng W, Zhang X, Huang L, et al. Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability. Adv Mater. 2016;28:2201.
  • Zhang D, Eaton SW, Yu Y, et al. Solution-phase synthesis of cesium lead halide perovskite nanowires. Chem Soc. 2015;137:9230.
  • Deng W, Huang L, Xu X, et al. Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement. Nano Lett. 2017;17:2482.
  • Noh JH, Im SH, Heo JH, et al. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 2013;13:1764.
  • Wang Z, Cao D, Xu R, et al. Realizing ordered arrays of nanostructures: a versatile platform for converting and storing energy efficiently. Nano Energy. 2016;19:328.
  • Brongersma ML, Cui Y, Fan S. Light management for photovoltaics using high-index nanostructures. Nat Mater. 2014;13:451.
  • Song J, Xu L, Li J, et al. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv Mater. 2016;28:4861.
  • Lv L, Xu Y, Fang H, et al. Generalized colloidal synthesis of high-quality, two-dimensional cesium lead halide perovskite nanosheets and their applications in photodetectors. Nanoscale. 2016;8:13589.
  • Xue Y, Yuan J, Liu J, et al. Controllable synthesis of 2D perovskite on different substrates and its application as photodetector. Nanomaterials. 2018;8:591.
  • Li P, Shivananju BN, Zhang Y, et al. J Phys D: Appl Phys. 2017;50:094002.
  • Wang W, Ma Y, Qi L. High-Performance Photodetectors Based on Organometal Halide Perovskite Nanonets. Adv Funct Mater. 2017;27:1603653.
  • Dong Y, Gu Y, Zou Y, et al. Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect. Small. 2016;12:5622.
  • Ka I, Gerlein LF, Asuo IM, et al. An ultra-broadband perovskite-PbS quantum dot sensitized carbon nanotube photodetector. Nanoscale. 2018;10:9044.
  • Li C, Han C, Zhang Y, et al. Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films. Sol Energ Mat Sol C. 2017;172:341.
  • Batmunkh M, Macdonald TJ, Shearer CJ, et al. Carbon nanotubes in TiO2 nanofiber photoelectrodes for high‐performance perovskite solar cells. Adv Sci. 2017;4:1600504.
  • Spina M, Náfrádi B, Tóháti HM, et al. Nanoscale. 2016;8:4888.
  • Li Z, Boix PP, Xing G, et al. Carbon nanotubes as an efficient hole collector for high voltage methylammonium lead bromide perovskite solar cells. Nanoscale. 2016;8:6352.
  • Xu W, Niu M, Yang X, et al. Carbon nanotubes as the effective charge transport pathways for planar perovskite photodetector. Organic Electron. 2018;59:156.
  • Li X, Yu D, Chen J, et al. Constructing fast carrier tracks into flexible perovskite photodetectors to greatly improve responsivity. ACS Nano. 2017;11:2015.
  • Wang Y, Li X, Sreejith S, et al. Photon driven transformation of cesium lead halide perovskites from few-monolayer nanoplatelets to bulk phase. Adv Mater. 2016;28:10637.
  • Ka I, Gerlein LF, Nechache R, et al. High-performance nanotube-enhanced perovskite photodetectors. Sci Rep. 2017;7:45543.
  • Sun H, Tian W, Cao F, et al. Ultrahigh-performance self-powered flexible double-twisted fibrous broadband perovskite photodetector. Adv Mater. 2018;30:1706986.
  • Zhang K, Peng M, Wu W, et al. Mater Horiz. 2017;4:274.
  • Hong Q, Cao Y, Xu J, et al. Self-powered ultrafast broadband photodetector based on p–n heterojunctions of CuO/Si nanowire array. ACS Appl Mater Interfaces. 2014;6:20887.
  • Guo Y, Lei H, Xiong L, et al. Single phase, high hole mobility Cu2O films as an efficient and robust hole transporting layer for organic solar cells. J Mater Chem A. 2017;5:11055.
  • Son M-K, Steier L, Schreier M, et al. A copper nickel mixed oxide hole selective layer for Au-free transparent cuprous oxide photocathodes. Energy Environ Sci. 2017;10:912.
  • Alwadai N, Haque MA, Mitra S, et al. High-performance ultraviolet-to-infrared broadband perovskite photodetectors achieved via inter-/intraband transitions. ACS Appl Mater Interfaces. 2017;9:37832.
  • Flemban TH, Singaravelu V, Devia AAS, et al. Synthesis and protein incorporation of azido-modified unnatural amino acids. RSC Adv. 2015;5:94670.
  • Peng W, Yu R, Wang X, et al. Temperature dependence of pyro-phototronic effect on self-powered ZnO/perovskite heterostructured photodetectors. Nano Res. 2016;9:3695.
  • Cao F, Tian W, Gu B, et al. High-performance UV–vis photodetectors based on electrospun ZnO nanofiber-solution processed perovskite hybrid structures. Nano Res. 2017;10:2244.
  • Li F, Qi J, Xu M, et al. Layer dependence and light tuning surface potential of 2D MoS2 on various substrates. Small. 2017;13:1603103.
  • Jo S, Kang D, Shim J, et al. A high‐performance WSe2/h‐BN photodetector using a triphenylphosphine (PPh3)‐based n‐doping technique. Adv Mater. 2016;28:4824.
  • Qi J, Lan Y, Stieg AZ, et al. Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics. Nat Commun. 2015;6:7430.
  • Bai F, Qi J, Li F, et al. A High‐performance self‐powered photodetector based on monolayer MoS2/perovskite heterostructures. Adv Mater Interfaces. 2018;5:1701275.
  • Yuan Q, Yu W, Yuan J, et al. Investigation on the strong light-matter interaction in the graphene-perovskite heterostructure photodetector. Mater Sci Forum. 2018;926:85.
  • Nie R, Deng X, Feng L, et al. Highly sensitive and broadband organic photodetectors with fast speed gain and large linear dynamic range at low forward bias. Small. 2017;13:1603260.
  • Shen L, Zhang Y, Bai Y, et al. A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain. Nanoscale. 2016;8:12990.
  • Wei H, Fang Y, Yuan Y, et al. Trap engineering of CdTe nanoparticle for high gain, fast response, and low noise P3HT: CdTe nanocomposite photodetectors. Adv Mater. 2015;27:4975.
  • Zhang D, Liu C, Li K, et al. Trapped-electron-induced hole injection in perovskite photodetector with controllable gain. Adv Optical Mater. 2018;6:1701189.
  • Yan H, Manion JG, Yuan MJ, et al. Increasing polymer solar cell fill factor by trap‐filling with F4‐TCNQ at parts per thousand concentration. Adv Mater. 2016;28:6491.
  • Liu DY, Li Y, Yuan JY, et al. Improved performance of inverted planar perovskite solar cells with F4-TCNQ doped PEDOT: PSS hole transport layers. J Mater Chem A. 2017;5:5701.
  • Tong S, Sun J, Wang C, et al. High-Performance broadband perovskite photodetectors based on CH3NH3PbI3/C8BTBT Heterojunction. Adv Electron Mater. 2017;3:1700058.
  • Wang Y, Yang D, Zhou X, et al. Perovskite/polymer hybrid thin films for high external quantum efficiency photodetectors with wide spectral response from visible to near-infrared wavelengths. Adv Optical Mater. 2017;5:1700213.
  • Luo W, Xu X, Luo S, et al., 12th IEEE International Conference on Nano/Micro Engineered and Molecular Systems; 2017. DOI:10.1109/NEMS.2017.8017088
  • Yu J, Chen X, Wang Y, et al. A high-performance self-powered broadband photodetector based on a CH3NH3PbI3 perovskite/ZnO nanorod array heterostructure. J Mater Chem C. 2016;4:7302.
  • Yi X, Ren Z, Chen N, et al. TiO2 nanocrystal/perovskite bilayer for high-performance photodetectors. Adv Electron Mater. 2017;3:1700251.
  • Yi X, Wang Y, Chen N, et al. A broad-spectral-response perovskite photodetector with a high on/off ratio and high detectivity. Mater Chem Front. 2018;2:1847.
  • Wu H, Su Z, Jin F, et al. Improved performance of perovskite photodetectors based on a solution-processed CH3NH3PbI3/SnO2 heterojunction. Organic Electron. 2018;57:206.
  • Wang Y, Zhang XW, Jiang Q, et al. Interface engineering of high-performance perovskite photodetectors based on PVP/SnO2 electron transport layer. Mater Interfaces. 2018;10:6505.
  • Liu H, Zhang X, Zhang L, et al. A high-performance photodetector based on an inorganic perovskite–ZnO heterostructure. Chem C. 2017;5:6115.
  • Aharon S, Gamliel S, El CB, et al. Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. Phys Chem Chem Phys. 2014;16:10512.
  • Butler KT, Frost JM, Walsh A. Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3. Mater Horiz. 2015;2:228.
  • Ji CH, Kim KT, Oh SY. High-detectivity perovskite-based photodetector using a Zr-doped TiOx cathode interlayer. RSC Adv. 2018;8:8302.
  • Wang K, Wu C, Yang D, et al. Quasi-two-dimensional halide perovskite single crystal photodetector. ACS Nano. 2018;12:4919.
  • Muljarov EA, Tikhodeev SG, Gippius NA, et al. Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds. Phys Rev B. 1995;51:14370.
  • Tang X, Han S, Zu Z, et al. All-inorganic perovskite CsPb2Br5 microsheets for photodetector application. Front Phys. 2018;5:69.
  • Tian W, Zhou H, Li L. Hybrid organic–inorganic perovskite photodetectors. Small. 2017;13:1702107.