3,800
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

Near-field optics on flatland: from noble metals to van der Waals materials

, , , &
Article: 1593051 | Received 25 Nov 2018, Accepted 19 Feb 2019, Published online: 09 Apr 2019

References

  • Rayleigh L. On the Theory of Optical Images, with special reference to the Microscope. Journal of Microscopy. 1903: 23: 474.
  • Synge EH. A suggested method for extending microscopic resolution into the ultra-microscopic region. Philos Mag Ser 1. 1928; 6 : 356.
  • Opower H. The Optical Transfer Function of Imaging Systems. Opt Laser Technol. 1999; 31: 613.
  • Wessel JE. Surface-enhanced optical microscopy. J Opt Soc Am B-Opt Phys. 1985;2:312.
  • Courjon D, Bainier C. Near field microscopy and near field optics. Rep Prog Phys. 2003;57:989.
  • Losquin A, Lummen TTA. Electron microscopy methods for space-, energy-, and time-resolved plasmonics. Front Phys China. 2017; 12: 127301.
  • Spektor G, Kilbane D, Mahro A, et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science. 2017;355:1187.
  • Man KL, Altman MS. Low energy electron microscopy and photoemission electron microscopy investigation of graphene. J Phys. 2012;24:314209.
  • Vesseur EJR, Waele RD, Kuttge M, et al. Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy. Nano Lett. 2007;7:2843.
  • Nelayah J, Kociak M, Stephan O, et al. Mapping surface plasmons on a single metallic nanoparticle. Nat Phys. 2007;3:348.
  • Govyadinov AA, Konecna A, Chuvilin A, et al. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope. Nat Commun. 2017;8:95.
  • Raza S, Esfandyarpour M, Koh AL, et al. Electron energy-loss spectroscopy of branched gap plasmon resonators. Nat Commun. 2016;7:13790.
  • Schoen DT, Holsteen AL, Brongersma ML. Probing the electrical switching of a memristive optical antenna by STEM EELS. Nat Commun. 2016;7:12162.
  • Hillenbrand R, Keilmann F, Hanarp P, et al. Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe. Appl Phys Lett. 2003;83:368.
  • Wurtz G, Bachelot R, Royer P. A reflection-mode apertureless scanning near-field optical microscope developed from a commercial scanning probe microscope. Rev Sci Instrum. 1998;69:1735.
  • DorfmüLler J, Vogelgesang R, Weitz RT, et al. Fabry-pérot resonances in one-dimensional plasmonic nanostructures. Nano Lett. 2009;9:2372.
  • Cvitkovic A., Ocelic N., Hillenbrand R. Material-Specific Infrared Recognition of Single Sub-10 nm Particles by Substrate-Enhanced Scattering-type Near-field Microscopy. Nano Lett. 2007; 7: 3177.
  • Hillenbrand R, Keilmann F. Complex Optical Constants on a Subwavelength Scale. Phys Rev Lett. 2000;85:3029.
  • Hillenbrand R, Taubner T, Keilmann F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature. 2002;418:159.
  • Andryieuski A, Zenin VA, Malureanu R, et al. Direct Characterization of Plasmonic Slot Waveguides and Nanocouplers. Nano Lett. 2014;14:3925.
  • Gjonaj B, David A, Blau Y, et al. Sub-100 nm Focusing of Short Wavelength Plasmons in Homogeneous 2D Space. Nano Lett. 2014;14:5598.
  • Grefe SE, Leiva D, Mastel S, et al. Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas. Phys Chem Chem Phys. 2013;15:18944.
  • Chen J, Albella P, Pirzadeh Z, et al. Plasmonic Nickel Nanoantennas. Small. 2011;7:2341.
  • Schnell M, Garcia-Etxarri A, Alkorta J, et al. Phase-Resolved Mapping of the Near-Field Vector and Polarization State in Nanoscale Antenna Gaps. Nano Lett. 2010;10:3524.
  • Huth F, Chuvilin A, Schnell M, et al. Resonant antenna probes for tip-enhanced infrared near-field microscopy. Nano Lett. 2013;13:1065.
  • Mastel S, Lundeberg MB, Alonso-Gonzalez P, et al. Terahertz nanofocusing with cantilevered terahertz-resonant antenna tips. Nano Lett. 2017;17:6526.
  • Low T., Chaves A., Caldwell J.D., et al. Polaritons in layered two-dimensional materials. Nat. Mater. 2017, 16: 182.
  • Basov DN, Averitt RD, Hsieh D. Towards properties on demand in quantum materials. Nat Mater. 2017;16:1077.
  • Basov DN, Fogler MM, Garcia de Abajo FJ. Polaritons in van der Waals materials. Science 2016; 354: 630.
  • Betzig E, Trautman JK, Harris TD, et al. Breaking the diffraction barrier: optical microscopy on a nanometric scale. Science. 1991;251:1468.
  • Betzig E, Trautman JK. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science. 1992;257:189.
  • Hillenbrand R, Knoll B, Keilmann F. Pure optical contrast in scattering-type scanning near-field microscopy. J Microsc. 2001;202:77.
  • Labardi M, Patane S, Allegrini M. Artifact-free near-field optical imaging by apertureless microscopy. Appl Phys Lett. 2000;77:621.
  • Gao F, Li X, Wang J, et al. Dynamic behavior of tuning fork shear-force structures in a SNOM system. Ultramicroscopy. 2014;142:10.
  • Burresi M, Engelen R, Opheij A, et al. Observation of polarization singularities at the nanoscale. Phys Rev Lett. 2009;102:033902.
  • Feber BL, Rotenberg N, Beggs DM, et al. Simultaneous measurement of nanoscale electric and magnetic optical fields. Nat Photonics. 2013;8:43.
  • Kim ZH, Leone SR. Polarization-selective mapping of near-field intensity and phase around gold nanoparticles using apertureless near-field microscopy. Opt Express. 2008;16:1733.
  • Kim D, Heo J, Ahn S, et al. Real-space mapping of the strongly coupled plasmons of nanoparticle dimers. Nano Lett. 2009;9:3619.
  • Habteyes TG, Dhuey S, Kiesow KI, et al. Probe-sample optical interaction: size and wavelength dependence in localized plasmon near-field imaging. Opt Express. 2013;21:21607.
  • Sadiq D, Shirdel J, Lee JS, et al. Adiabatic Nanofocusing Scattering-Type Optical Nanoscopy of Individual Gold Nanoparticles. Nano Lett. 2011;11:1609.
  • Ropers C, Neacsu CC, Elsaesser T, et al. Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett. 2007;7:2784.
  • Ocelic N, Huber AJ, Hillenbrand R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl Phys Lett. 2006;89:101124.
  • Stefanon I, Blaize S, Bruyant A, et al. Heterodyne detection of guided waves using a scattering-type scanning near-field optical microscope. Opt Express. 2005;13:5553.
  • Novotny L, Bian RX, Xie XS. Theory of nanometric optical tweezers. Phys Rev Lett. 1997;79:645.
  • Noguez C. Surface plasmons on metal nanoparticles:  the influence of shape and physical environment. J Phys Chem C. 2007;111:3806.
  • Meng L, Yang Z, Chen J, et al. Effect of electric field gradient on sub-nanometer spatial resolution of tip-enhanced Raman Spectroscopy. Sci Rep. 2015;5:9240.
  • Taubner T, Hillenbrand R, Keilmann F. Performance of visible and mid-infrared scattering-type near-field optical microscopes. J Microsc. 2003;210:311.
  • Schnell M, Garciaetxarri A, Huber AJ, et al. Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy. J Phys Chem C. 2010;114:7341.
  • Dai S, Fei Z, Ma Q, et al. Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride. Science. 2014;343:1125.
  • Fei Z., Rodin AS, Andreev GO. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 2012; 487: 82.
  • Fei Z, Andreev GO, Bao W, et al.Infrared Nanoscopy of Dirac Plasmons at the Graphene–SiO2 Interface. Nano Lett. 2011;11:4701.
  • Schnell M, Sarriugarte P, Neuman T, et al. Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces. Nano Lett. 2016;16:663.
  • Chen J, Badioli M, Alonso-Gonzalez P, et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 2012; 487: 77.
  • García-Etxarri A, Romero I, García de Abajo FJ et al. Influence of the tip in near-field imaging of nanoparticle plasmonic modes: Weak and strong coupling regimes. Phys. Rev. B 2009; 79: 125439 .
  • Rang M, Jones AC, Zhou F, et al. Optical near-field mapping of plasmonic nanoprisms. Nano Lett. 2008;8:3357.
  • Esteban R, Vogelgesang R, Dorfmuller J, et al. Direct near-field optical imaging of higher order plasmonic resonances. Nano Lett. 2008;8:3155.
  • Neuman T, Alonso-González P, Garcia-Etxarri A, et al. Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy. Laser Photonics Rev. 2015;9:637.
  • Burresi M, Van Oosten D, Kampfrath T, et al. Probing the magnetic field of light at optical frequencies. Science. 2009;326:550.
  • Ahn J, Kihm HW, Kihm JE, et al. 3-dimensional local field polarization vector mapping of a focused radially polarized beam using gold nanoparticle functionalized tips. Opt Express. 2009;17:2280.
  • Novotny L, Van Hulst NF. Antennas for light. Nat Photonics. 2011;5:83.
  • Wang T, Li P, Chigrin DN, et al. Phonon-polaritonic bowtie nanoantennas: controlling infrared thermal radiation at the nanoscale. ACS Photonics. 2017;4:1753.
  • Sarriugarte P, Schnell M, Chuvilin A, et al. Polarization-resolved near-field characterization of nanoscale infrared modes in transmission lines fabricated by gallium and helium ion beam milling. ACS Photonics. 2014;1:604.
  • Cvitkovic A, Ocelic N, Aizpurua J, et al. Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap. Phys Rev Lett. 2006;97:060801.
  • Chen Y, Chen Y, Chu J, et al. Bridged bowtie aperture antenna for producing an electromagnetic hot spot. ACS Photonics. 2017;4:567.
  • Habteyes TG. Direct near-field observation of orientation-dependent optical response of gold nanorods. J Phys Chem C. 2014;118:9119.
  • Alonso-Gonzalez P, Albella P, Neubrech F, et al. Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas. Phys Rev Lett. 2013;110:203902.
  • Bonanni V, Bonetti S, Pakizeh T, et al.Designer Magnetoplasmonics with Nickel Nanoferromagnets. Nano Lett. 2011;11:5333.
  • Xu H, Bjerneld EJ, Kall M, et al. Spectroscopy of single hemoglobin molecules by surface enhanced Raman Scattering. Phys Rev Lett. 1999;83:4357.
  • Alonso-Gonzalez P, Albella P, Schnell M, et al. Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots. Nat Commun. 2012;3:684.
  • Kusch P, Mastel S, Mueller NS, et al. Dual-scattering near-field microscope for correlative nanoimaging of SERS and electromagnetic hotspots. Nano Lett. 2017;17:2667.
  • Schnell M, Alonso-Gonzalez P, Arzubiaga L, et al. Nanofocusing of mid-infrared energy with tapered transmission lines. Nat Photonics. 2011;5:283.
  • Schnell M, Garcia-Etxarri A, Huber A, et al. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat Photonics. 2009;3:287.
  • Alonso-Gonzalez P, Schnell M, Sarriugarte P, et al.Real-Space Mapping of Fano Interference in Plasmonic Metamolecules. Nano Lett. 2011;11:3922.
  • Bohn BJ, Schnell M, Kats MA, et al.Near-Field Imaging of Phased Array Metasurfaces. Nano Lett. 2015;15:3851.
  • Wei H, Zhang S, Tian X, et al. Highly tunable propagating surface plasmons on supported silver nanowires. Proc Natl Acad Sci U S A. 2013; 110: 4494.
  • Zhang S, Wei H, Bao K, et al. Chiral surface plasmon polaritons on metallic nanowires. Phys Rev Lett. 2011;107:096801.
  • Koppens FHL, Chang D, De Abajo FJG. Graphene Plasmonics: A Platform for Strong Light–Matter Interactions. Nano Lett. 2011;11:3370.
  • Sanvitto D, Kéna-Cohen S. The road towards polaritonic devices. Nat Mater. 2016;15:1061.
  • Woessner A, Parret R, Davydovskaya D, et al. Electrical detection of hyperbolic phonon-polaritons in heterostructures of graphene and boron nitride. 2D Mater Appl. 2017;1.
  • Kumar A, Low T, Fung KH, et al. Tunable Light–Matter Interaction and the Role of Hyperbolicity in Graphene–hBN System. Nano Lett. 2015;15:3172.
  • Woessner A, Misra A, Cao Y, et al. Propagating plasmons in a charge-neutral quantum tunneling transistor. ACS Photonics. 2017;4:3012.
  • Novoselov KS, Geim AK, Morozov SV, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 2005;438:197.
  • Nair RR, Blake P, Grigorenko AN, et al.Fine Structure Constant Defines Visual Transparency of Graphene. Science. 2008; 320: 1308.
  • Guo Q, Li C, Deng B, et al. Infrared Nanophotonics Based on Graphene Plasmonics. ACS Photonics 2017; 4: 2989.
  • Castro Neto AH, Guinea F, Peres NMR, et al. The electronic properties of graphene. Rev Mod Phys. 2009;81:109.
  • Yan H, Low T, Zhu W, et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat Photonics. 2013;7:394.
  • Yan H, Li X, Chandra B, et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol. 2012;7:330.
  • Ni GX, McLeod AS, Sun Z, et al. Fundamental limits to graphene plasmonics. Nature. 2018; 557: 530.
  • Fei Z, Foley JJ, Gannett W, et al. Ultraconfined Plasmonic Hotspots Inside Graphene Nanobubbles. Nano Lett. 2016; 16: 7842.
  • Hu F, Luan Y, Fei Z, et al. Imaging the Localized Plasmon Resonance Modes in Graphene Nanoribbons. Nano Lett. 2017; 17: 5423.
  • Duan J, Chen R, Chen J. Nano-infrared imaging of localized plasmons in graphene nano-resonators. Chin Phys B. 2017;26:117802.
  • Fei Z, Goldflam MD, Wu JS, et al.Edge and Surface Plasmons in Graphene Nanoribbons. Nano Lett. 2015;15:8271.
  • Nikitin A, Alonso-González P, Vélez S, et al. Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators. Nat Photonics. 2016;10:239.
  • Bezares FJ, De Sanctis A, Saavedra JRM, et al. Intrinsic Plasmon–Phonon Interactions in Highly Doped Graphene: A Near-Field Imaging Study. Nano Lett. 2017, 17: 5908.
  • Fei Z, Iwinski EG, Ni GX, et al.Tunneling Plasmonics in Bilayer Graphene. Nano Lett. 2015;15:4973.
  • Fei Z, Ni G-X, Jiang B-Y, et al. Nanoplasmonic Phenomena at Electronic Boundaries in Graphene. ACS Photonics 2017; 4: 2971.
  • Slipchenko TM, Nesterov ML, Hillenbrand R, et al. Graphene Plasmon Reflection by Corrugations. ACS Photonics. 2017; 4: 3081 .
  • Chen J, Nesterov ML, Nikitin AY, et al. Strong plasmon reflection at nanometer-size gaps in monolayer graphene on SiC. Nano Lett. 2013;13:6210.
  • Fei Z, Rodin AS, Gannett W, et al. Electronic and plasmonic phenomena at graphene grain boundaries. Nat Nanotechnol. 2013;8:821.
  • Jiang BY, Ni GX, Pan C, et al. Tunable plasmonic reflection by bound 1D electron states in a 2D dirac metal. Phys Rev Lett. 2016;117:086801.
  • Jiang BY, Ni GX, Addison Z, et al. Plasmon Reflections by Topological Electronic Boundaries in Bilayer Graphene. Nano Lett. 2017; 17: 7080.
  • Jiang L, Shi Z, Zeng B, et al. Soliton-dependent plasmon reflection at bilayer graphene domain walls. Nat Mater. 2016;15:840.
  • Woessner A, Gao Y, Torre I, et al. Electrical 2π phase control of infrared light in a 350-nm footprint using graphene plasmons. Nat Photonics. 2017;11:421.
  • Dai S, Ma Q, Liu MK, et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat Nanotechnol. 2015;10:682.
  • Caldwell JD, Kretinin AV, Chen Y, et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat Commun. 2014;5:5221.
  • Liu Z, Lee H, Xiong Y, et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science. 2007;315:1686.
  • Yao J, Liu Z, Liu Y, et al. Optical negative refraction in bulk metamaterials of nanowires. Science. 2008;321:930.
  • Yang X, Yao J, Rho J, et al. Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws. Nat Photonics. 2012;6:450.
  • Hoffman AJ, Alekseyev L, Howard SS, et al. Negative refraction in semiconductor metamaterials. Nat Mater. 2007;6:946.
  • Kim J, Drachev VP, Jacob Z, et al. Improving the radiative decay rate for dye molecules with hyperbolic metamaterials. Opt Express. 2012;20:8100.
  • High AA, Devlin RC, Dibos A, et al. Visible-frequency hyperbolic metasurface. Nature. 2015;522:192.
  • Liu Y, Zhang X. Metasurfaces for manipulating surface plasmons. Appl Phys Lett. 2013;103:141101.
  • Li P, Dolado I, Alfaro-Mozaz FJ, et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science. 2018;359:892.
  • Li P, Dolado I, Alfaro-Mozaz FJ, et al. Optical nanoimaging of hyperbolic surface polaritons at the edges of van der Waals materials. Nano Lett. 2017;17:228.
  • Dai S, Tymchenko M, Yang Y, et al.Manipulation and Steering of Hyperbolic Surface Polaritons in Hexagonal Boron Nitride. Adv. Mater. 2018; 30: 1706358.
  • Ma W, Gonzalez PA, Li S, et al.In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature. 2018;562:557.
  • Zheng Z, Chen J, Wang Y, et al. Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides. Adv Mater. 2018;30:1705318.
  • Li P, Lewin M, Kretinin AV, et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat Commun. 2015;6:7507.
  • Dai S, Ma Q, Andersen T, et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat Commun. 2015;6:6963.
  • Alfaro-Mozaz FJ, Alonso-Gonzalez P, Velez S, et al. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nat Commun. 2017;8:15624.
  • Huber MA, Mooshammer F, Plankl M, et al. Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. Nat Nanotechnol. 2017;12:207.
  • Hu D, Yang X, Li C, et al. Probing optical anisotropy of nanometer-thin van der waals microcrystals by near-field imaging. Nat Commun. 2017; 8: 1471.
  • Hu F, Luan Y, Scott ME, et al. Imaging exciton–polariton transport in MoSe2 waveguides. Nat Photonics. 2017;11:356.
  • Fei Z, Scott ME, Gosztola DJ, et al.Nano-optical imaging of WSe2 waveguide modes revealing light-exciton interactions. Phys Rev B. 2016;94.
  • Woessner A, Lundeberg MB, Gao Y, et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat Mater. 2015;14:421.
  • Yang X, Zhai F, Hu H, et al. Far-field spectroscopy and near-field optical imaging of coupled plasmon-phonon polaritons in 2D van der Waals heterostructures. Adv Mater. 2016;28:2931.
  • Ju L, Shi Z, Nair N, et al. Topological valley transport at bilayer graphene domain walls. Nature. 2015;520:650.
  • Li P, Yang X, Maß TW, et al. Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nat Mater. 2016;15:870.
  • Lundeberg MB, Gao Y, Asgari R, et al. Tuning quantum nonlocal effects in graphene plasmonics. Science. 2017; 357: 187.
  • Qazilbash, M. M., et al. (2007). “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging.“ Science 318(5857): 1750–1753.
  • Ni GX, Wang H, Wu JS, et al. Plasmons in graphene moiré superlattices. Nat Mater. 2015;14:1217.
  • Duan J, Chen R, Cheng Y, et al. Optically unraveling the edge chirality-dependent band structure and plasmon damping in graphene edges. Adv Mater. 2018;30:1800367.
  • Yoxall E, Schnell M, Nikitin AY, et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat Photonics. 2015;9:674.
  • Eisele M, Cocker TL, Huber MA, et al. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution. Nat Photonics. 2014;8:841.
  • Huber MA, Plankl M, Eisele M, et al. Ultrafast mid-infrared nanoscopy of strained vanadium dioxide nanobeams. Nano Lett. 2016;16:1421.
  • Ni GX, Wang L, Goldflam MD, et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat Photonics. 2016;10:244.
  • Wagner, M., et al. (2014). “Ultrafast and Nanoscale Plasmonic Phenomena in Exfoliated Graphene Revealed by Infrared Pump–Probe Nanoscopy.“ Nano Letters 14(2): 894–900.
  • Hu H, Yang X, Zhai F, et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons. Nat Commun. 2016;7:12334.
  • Amenabar I, Poly S, Goikoetxea M, et al. Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy. Nat Commun. 2017;8:14402.
  • Amenabar I, Poly S, Nuansing W, et al. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat Commun. 2013;4:2890.
  • Dominguez G, McLeod AS, Gainsforth Z, et al. Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples. Nat Commun. 2014;5:5445.
  • Westermeier C, Cernescu A, Amarie S, et al.Sub-micron phase coexistence in small-molecule organic thin films revealed by infrared nano-imaging. Nat Commun. 2014;5:4101.
  • Lucas IT, McLeod AS, Syzdek JS, et al. IR Near-Field Spectroscopy and Imaging of Single LixFePO4 Microcrystals. Nano Lett. 2015;15:1.
  • Huth F, Govyadinov A, Amarie S, et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 2012;12:3973.
  • Alonso-Gonzalez P, Nikitin AY, Gao Y, et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat Nanotechnol. 2016; 12: 31.
  • Lundeberg MB, Gao Y, Woessner A, et al. Thermoelectric detection and imaging of propagating graphene plasmons. Nat Mater. 2017;16:204.
  • Alonso-González P, Nikitin AY, Golmar F, et al. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. Science. 2014;344:1369.
  • Duan J, Chen R, Li J, et al. Launching Phonon Polaritons by Natural Boron Nitride Wrinkles with Modifiable Dispersion by Dielectric Environments. Adv Mater. 2017;29: 170294.
  • Zhao Y, Tang Y, Chen Y, et al. Corking Carbon Nanotube Cups with Gold Nanoparticles. ACS Nano. 2012;6:6912.
  • Nudnova MM, Sigg J, Wallimann P, et al. Plasma ionization source for atmospheric pressure mass spectrometry imaging using near-field optical laser ablation. Anal Chem. 2015;87:1323.
  • Lee KG, Kihm HW, Kihm JE, et al. Vector field microscopic imaging of light. Nat Photonics. 2007;1:53.
  • Rotenberg N, Kuipers L. Mapping nanoscale light fields. Nat Photonics. 2014;8:919.