2,266
Views
14
CrossRef citations to date
0
Altmetric
Review Articles

Thermodynamics and statistical mechanics of chemically powered synthetic nanomotors

&
Article: 1602480 | Received 04 Oct 2018, Accepted 12 Mar 2019, Published online: 16 May 2019

References

  • Kay ER, Leigh DA, Zerbetto F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 2007;46:72–191.
  • Sauvage JP, Gaspard P, editors. From non-covalent assemblies to molecular machines. Weinheim: Wiley-VCH; 2011.
  • van Leeuwen PWNM. Homogeneous catalysis. Dordrecht: Kluwer Academic Publishers.; 2004.
  • Dey KK, Pong FY, Breffke J, et al. Dynamic coupling at the Ångstrom scale. Angew Chem Int Ed. 2016;55:361–397.
  • Alberts B, Bray D, Johnson A, et al. Essential cell biology: an introduction to the molecular biology of the cell. New York: Garland Science; 1998.
  • Jones RAL. Soft machines: nanotechnology and life. Oxford: Oxford University Press; 2004.
  • Wang J. Nanomachines: fundamentals and applications. Weinheim, Germany: Wiley-VCH; 2013.
  • Mareschal M, Malek Mansour M, Puhl A, et al. Molecular dynamics versus hydrodynamics in a two-dimensional Rayleigh-Bénard system. Phys Rev Lett. 1988;61:2550–2553.
  • Paxton WF, Kistler KC, Olmeda CC, et al. Catalytic motors: autonomous movement of striped nanorods. J Am Chem Soc. 2004;126:13424–13431.
  • Fournier-Bidoz S, Arsenault AC, Manners I, et al. Synthetic self-propelled nanorotors. Chem Commun. 2005;441–443.
  • Wang W, Duan W, Ahmed S, et al. Small power: autonomous nano- and micromotors propelled by self-generated gradients. Nano Today. 2013;8:531–554.
  • Sánchez S, Soler L, Katuri J. Chemically powered micro- and motors. Angew Chem Int Ed. 2014;54:1414–1444.
  • Colberg PH, Reigh SY, Robertson B, et al. Chemistry in motion: tiny synthetic motors. Acc Chem Res. 2014;47:3504–3511.
  • Abdelmohsen L, Peng F, Tu Y, et al. Micro- and nano-motors for biomedical applications. J Mater Chem B. 2014;2:2395.
  • Rückner G, Kapral R. Chemically powered nanodimers. Phys Rev Lett. 2007;98:150603.
  • Sumino Y, Magome N, Hamada T, et al. Self-running droplet: emergence of regular motion from nonequilibrium noise. Phys Rev Lett. 2005;94:068301.
  • Chen YJ, Nagamine Y, Yoshikawa K. Self-propelled motion of a droplet induced by Marangoni-driven spreading. Phys Rev E. 2009;80:016303.
  • Thutupalli S, Seemann R, Herminghaus S. Swarming behavior of simple model squirmers. New J Phys. 2011;13:073021.
  • Izri Z, van der Linden MN, Michelin S, et al. Self-propulsion of pure water droplets by spontaneous Marangoni-stress-driven motion. Phys Rev Lett. 2014;113:248302.
  • Landau LD, Lifshitz EM. Statistical physics, part 2. Oxford: Pergamon Press; 1980.
  • Ortiz de Zárate JM, Sengers JV. Hydrodynamic fluctuations in fluids and fluid mixtures. Amsterdam: Elsevier; 2006.
  • Kapral R. Perspective: motors without moving parts that propel themselves in solution. J Chem Phys. 2013;138:020901.
  • Valadares LF, Tao YG, Zacharia NS, et al. Catalytic motors: self-propelled sphere dimers. Small. 2010;6:565–572.
  • Ke H, Ye S, Carroll RL, et al. Motion analysis of self-propelled Pt-silica particles in hydrogen peroxide solutions. J Phys Chem A. 2010;114:5462–5467.
  • Gao W, Pei A, Dong R, et al. Catalytic iridium-based Janus micromotors powered by ultralow levels of chemical fuels. J Am Chem Soc. 2014;136:2276–2279.
  • Mazur P, Bedeaux D. A generalization of Faxén’s theorem to nonsteady motion of a sphere through an incompressible fluid in arbitrary flow. Phys A. 1974;76:235–246.
  • Bedeaux D, Mazur P. Brownian motion and fluctuating hydrodynamics. Phys A. 1974;76:247–258.
  • Hills BP. A generalized Langevin equation for the angular velocity of a spherical Brownian particle from fluctuating hydrodynamics. Phys A. 1975;80:360–368.
  • Felderhof BU. Force density induced on a sphere in linear hydrodynamics: I. Fixed sphere, stick boundary conditions. Phys A. 1976;84:557–568.
  • Felderhof BU. Force density induced on a sphere in linear hydrodynamics: II. Moving sphere, mixed boundary conditions. Phys. A 1976;84:569–576.
  • Bedeaux D, Albano AM, Mazur P. Brownian motion and fluctuating hydrodynamics II; A fluctuation-dissipation theorem for the slip coefficient. Phys A. 1977;88:574–582.
  • Bechinger C, Leonardo RD, Löwen H, et al. Active particles in complex and crowded environments. Rev Mod Phys. 2016;88:045006.
  • Campbell AI, Ebbens SJ. Gravitaxis in spherical Janus swimming devices. Langmuir. 2013;295:14066–14073.
  • Prigogine I. Introduction to thermodynamics of irreversible processes. New York: Wiley; 1967.
  • de Groot SR, Mazur P. Nonequilibrium thermodynamics. New York: Dover; 1984.
  • Nicolis G. Irreversible thermodynamics. Rep Prog Phys. 1979;42:225–268.
  • Landau LD, Lifshitz EM. Statistical physics, part 1. 3rd ed. Oxford: Pergamon Press; 1980.
  • Gardiner CW. Handbook of stochastic methods for physics, chemistry and the natural sciences. 3rd ed. Berlin: Springer; 2004.
  • Onsager L. Reciprocal relations in irreversible processes I. Phys Rev. 1931;37:405–426.
  • Onsager L. Reciprocal relations in irreversible processes II. Phys Rev. 1931;38:2265–2279.
  • Casimir HBG. On Onsager’s principle of microscopic reversibility. Rev Mod Phys. 1945;17:343–350.
  • Waldmann L. Non-equilibrium thermodynamics of boundary conditions. Z Naturforschg A. 1967;22:1269–1280.
  • Bedeaux D, Albano AM, Mazur P. Boundary conditions and non-equilibrium thermodynamics. Phys A. 1976;82:438–462.
  • Haase R. Thermodynamics of irreversible processes. New York: Dover; 1969.
  • Callen HB, Welton TA. Irreversibility and generalized noise. Phys Rev. 1951;83:34–40.
  • Kovac J. Non-equilibrium thermodynamics of interfacial systems. Phys A. 1977;86:1–24.
  • Bedeaux D. Nonequilibrium thermodynamics and statistical physics of surfaces. Adv Chem Phys. 1986;64:47–109.
  • Albano AM, Bedeaux D, Mazur P. On the motion of a sphere with arbitrary slip in a viscous incompressible fluid. Phys A. 1975;80:89–97.
  • Gaspard P, Kapral R. Nonequilibrium thermodynamics and boundary conditions for reaction and transport in heterogeneous media. J Chem Phys. 2018;148:194114.
  • Anderson JL. Colloid transport by interfacial forces. Ann Rev Fluid Mech. 1989;21:61–99.
  • Anderson JL, Prieve DC. Diffusiphoresis caused by gradients of strongly absorbing solutes. Langmuir. 1991;7:403–406.
  • Ajdari A, Bocquet L. Giant amplification of interfacially driven transport by hydrodynamic slip: diffusio-osmosis and beyond. Phys Rev Lett. 2006;96:186102.
  • Gaspard P, Kapral R. Fluctuating chemohydrodynamics and the stochastic motion of self-diffusiophoretic particles. J Chem Phys. 2018;148:134104.
  • Lighthill MJ. On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun Pure Appl Math. 1952;5:109–118.
  • Blake JR. A spherical envelope approach to ciliary propulsion. J Fluid Mech. 1971;46:199–208.
  • Reigh SY, Huang MJ, Schofield J, et al. Microscopic and continuum descriptions of Janus motor fluid flow fields. Phil Trans R Soc A. 2016;374:20160140.
  • Campbell AI, Ebbens SJ, Illien P, et al. Experimental observation of flow fields around Janus spheres. arXiv:1802.04600. 2018.
  • Anderson JL. Transport mechanisms of biological colloids. Ann N Y Acad Sci. 1986;469:166–177.
  • Jülicher F, Ajdari A, Prost J. Modeling molecular motors. Rev Mod Phys. 1997;69:1269.
  • Huang MJ, Schofield J, Gaspard P, et al. From single particle motion to collective dynamics in Janus motor systems. J Chem Phys. 2019;150:124110.
  • Gaspard P, Kapral R. Mechanochemical fluctuation theorem and thermodynamics of self-phoretic motors. J Chem Phys. 2017;147:211101.
  • Huang MJ, Schofield J, Gaspard P, et al. Dynamics of Janus motors with microscopically reversible kinetics. J Chem Phys. 2018;149:024904.
  • Malevanets A, Kapral R. Mesoscopic model for solvent dynamics. J Chem Phys. 1999;110:8605–8613.
  • Kapral R. Multiparticle collision dynamics: simulation of complex systems on mesoscales. Adv Chem Phys. 2008;140:89–146.
  • Gompper G, Ihle T, Kroll DM, et al. Multi-particle collision dynamics: a particle- based mesoscale simulation approach to the hydrodynamics of complex fluids. Adv Polym Sci. 2009;221:1–87.
  • Tao YG, Kapral R. Dynamics of chemically powered nanodimer motors subject to an external force. J Chem Phys. 2009;131:024113.
  • Sabass B, Seifert U. Dynamics and efficiency of a self-propelled, diffusiophoretic swimmer. J Chem Phys. 2012;136:064508.
  • Farage TFF, Krinninger P, Brader JM. Effective interactions in active Brownian suspensions. Phys Rev E. 2015;91:042310.
  • Marconi UMB, Gnan N, Paoluzzi M, et al. Velocity distribution in active particles systems. Sci Rep. 2016;6:23297.
  • Wittmann R, Maggi C, Sharma A, et al. Effective equilibrium states in the colored-noise model for active matter I. Pairwise forces in the Fox and unified colored noise approximations. J Stat Mech Exp. 2017;11:113207.
  • Lebowitz JL, Spohn H. A Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics. J Stat Phys. 1999;95:333–365.
  • Andrieux D, Gaspard P. A fluctuation theorem for currents and non-linear response coefficients. J Stat Mech Theory Exp. 2007;2007:P02006.
  • Andrieux D, Gaspard P. Fluctuation theorem and Onsager reciprocity relations. J Chem Phys. 2004;121:6167–6174.
  • Jarzynski C. Equalities and inequalities: irreversibility and the second law of thermodynamics at the nanoscale. Annu Rev Condens Matter Phys. 2011;2:329–351.
  • Seifert U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep Prog Phys. 2012;75:126001.
  • Gaspard P. Multivariate fluctuation relations for currents. New J Phys. 2013;15:115014.
  • Falasco G, Pfaller R, Bregulla AP, et al. Exact symmetries in the velocity fluctuations of a hot Brownian swimmer. Phys Rev E. 2016;94:030602(R).
  • Andrieux D, Gaspard P. Temporal disorder and fluctuation theorem in chemical reactions. Phys Rev E. 2008;77:031137.
  • Gaspard P, Kapral R. Finite-time fluctuation theorem for diffusion-infuenced surface reactions. J Stat Mech Exp. 2018;2018:083206.
  • Gaspard P, Grosfils P, Huang MJ, et al. Finite-time fluctuation theorem for diffusion-influenced surface reactions on spherical and Janus catalytic particles. J Stat Mech Exp. 2018;2018:123206.
  • Hill TL. Free energy transduction and biochemical cycle kinetics. New York: Dover; 2005.
  • Lacoste D, Lau AWC, Mallick K. Fluctuation theorem and large deviation function for a solvable model of a molecular motors. Phys Rev E. 2008;78:011915.
  • Astumian RD. Thermodynamics and kinetics of molecular motors. Biophys J. 2010;98:2401–2409.
  • Gerritsma E, Gaspard P. Chemomechanical coupling and stochastic thermodynamics of the F1-ATPase molecular motor with an applied external torque. Biophys Rev Lett. 2010;5:163–208.
  • Andrieux D, Gaspard P. Fluctuation theorems and the nonequilibrium thermodynamics of molecular motors. Phys Rev E. 2006;74:011906.
  • Zwanzig R. Diffusion past an entropy barrier. J Phys Chem. 1992;96:3926–3930.
  • Reguera D, Rubí JM. Kinetic equations for diffusion in the presence of entropic barriers. Phys Rev E. 2001;64:061106.
  • Rubí JM, Lervik A, Bedeaux D, et al. Entropy facilitated active transport. J Chem Phys. 2017;146:185101.
  • Theurkauff I, Cottin-Bizonne C, Palacci J, et al. Dynamic clustering in active colloidal suspensions with chemical signaling. Phys Rev Lett. 2012;108:268303.
  • Elgeti J, Winkler RG, Gompper G. Physics of microswimmers–single particle motion and collective behavior: a review. Rep Prog Phys. 2015;78:056601.
  • Wang W, Duan W, Ahmed S, et al. From one to many: dynamic assembly and collective behavior of self-propelled colloidal motors. Acc Chem Res. 2015;48:1938–1946.
  • Zöttl A, Stark H. Emergent behavior in active colloids. J Phys Condens Matter. 2016;28:253001.
  • Liebchen B, Marenduzzo D, Pagonabarraga I, et al. Clustering and pattern formation in chemorepulsive active colloids. Phys Rev Lett. 2015;115:258301.
  • Jones RAL. Soft condensed matter. Oxford UK: Oxford University Press; 2002.
  • Huang MJ, Schofield J, Kapral R. Chemotactic and hydrodynamic effects on collective dynamics of self-diffusiophoretic Janus motors. New J Phys. 2017;19:125003.
  • Cates ME, Tailleur J. When are active Brownian particles and run-and-tumble particles equivalent? consequences for motility-induced phase separation. EPL. 2013;101:20010.
  • Bialké J, Löwen H, Speck T. Microscopic theory for the phase separation of self-propelled repulsive disks. EPL. 2013;103:30008.
  • Speck T, Menzel AM, Bialké J, et al. Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles. J Chem Phys. 2015;142:224109.
  • Saha S, Golestanian R, Ramaswamy S. Clusters, asters, and collective oscillations in chemotactic colloids. Phys Rev E. 2014;89:062316.
  • Pohl O, Stark H. Self-phoretic active particles interacting by diffusiophoresis: a numerical study of the collapsed state and dynamic clustering. Eur Phys J E. 2015;38:93.
  • Bedeaux D, Kapral R, Mazur P. The effective shear viscosity of a uniform suspension of spheres. Phys A. 1977;88:88–121.
  • Einstein A. Investigations on the theory of the Brownian movement. New York: Dover; 1956.
  • Landau LD, Lifshitz EM. Fluid mechanics. 2nd ed. Oxford: Pergamon Press; 1987.
  • Lebenhaft JR, Kapral R. Diffusion-controlled processes among partially absorbing stationary sinks. J Stat Phys. 1979;20:25–56.
  • Happel J, Brenner H. Low Reynolds number hydrodynamics. The Hague: Martinus Nijhoff Publishers; 1983.
  • Dhont JKG. An introduction to dynamics of colloids. Amsterdam: Elsevier; 1996.
  • Nägele G. Colloidal hydrodynamics. In: Bechinger C, Sciortino F, Ziherl P, editors. Physics of complex colloids, proc. of the int. school of physics “Enrico Fermi”. Amsterdam: IOS Press; 2013. p. 507–601.
  • Ramaswamy S. The mechanics and statistics of active matter. Annu Rev Condens Matter Phys. 2010;1:323–345.
  • Thakur S, Kapral R. Collective dynamics of self-propelled sphere-dimer motors. Phys Rev E. 2012;85:026121.
  • Colberg P, Kapral R. Many-body dynamics of chemically-propelled motors. J Chem Phys. 2017;147:064910.
  • Robertson B, Huang MJ, Chen JX, et al. Synthetic motors: working together through chemistry. Acc Chem Res. 2018;51:2355–2364.
  • Li T, Raizen MG. Brownian motion at short time scales. Ann Phys. 2013;525:281–295.
  • Li W, Davis EJ. The effects of gas and particle properties on thermophoresis. J Aerosol Sci. 1995;26:1085–1099.