2,348
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

Topological nodal line semimetals in graphene network structures

, &
Article: 1625724 | Received 17 Apr 2019, Accepted 19 May 2019, Published online: 14 Jul 2019

References

  • Balaban AT. Carbon and its nets. Comput Math Applic. 1989;17:626–652.
  • Wang JT, Chen CF, Kawazoe Y. New carbon allotropes with helical chains of complementary chirality connected by ethene-type π-conjugation. Sci Rep. 2013;3:03077.
  • Belenkov EA, Greshnyakov VA. Classification of structural modifications of carbon. Phys Solid State. 2013;55:1754.
  • Occelli F, Loubeyre P, Letoullec R. Properties of diamond under hydrostatic pressures up to 140 GPa. Nat Mater. 2003;2:151.
  • Chalifoux WA, Tykwinski RR. Synthesis of polyynes to model the sp-carbon allotrope carbyne. Nat Chem. 2010;2:967.
  • Wang JT, Chen CF, Wang EG, et al. A new carbon allotrope with six-fold helical chains in all-sp2 bonding networks. Sci Rep. 2014;4:04339.
  • Mao WL, Mao HK, Eng PJ, et al. Bonding changes in compressed superhard graphite. Science. 2003;302:425–427.
  • Niu HY, Chen XQ, Wang SB, et al. Families of superhard crystalline carbon allotropes constructed via cold compression of graphite and nanotubes. Phys Rev Lett. 2012;108:135501.
  • Umemoto K, Wentzcovitch RM, Saito S, et al. Body-centered tetragonal C4: A viable sp3 carbon allotrope. Phys Rev Lett. 2010;104:125504.
  • Li Q, Ma YM, Oganov AR, et al. Superhard monoclinic polymorph of carbon. Phys Rev Lett. 2009;102:175506.
  • Wang JT, Chen CF, Kawazoe Y. Low-temperature phase transformation from graphite to sp3 orthorhombic carbon. Phys Rev Lett. 2011;106:075501.
  • Wang JT, Chen CF, Kawazoe Y. Phase conversion from graphite toward a simple monoclinic sp3-carbon allotrope. J Chem Phys. 2012;137:024502.
  • Amsler M, Flores-Livas JA, Lehtovaara L, et al. Crystal structure of cold compressed graphite. Phys Rev Lett. 2012;108:065501.
  • Zhao ZS, Tian F, Dong X, et al. Tetragonal allotrope of group 14 elements. J Am Chem Soc. 2012;134:12362.
  • Selli D, Baburin IA, Martonak R, et al. Superhard sp3 carbon allotropes with odd and even ring topologies. Phys Rev B. 2011;84:161411.
  • Li ZZ, Lian CS, Xu J, et al. Computational prediction of body-centered cubic carbon in an all-sp3 six-member ring configuration. Phys Rev B. 2015;91:214106.
  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58.
  • Kroto HW, Heath JR, O’brien SC, et al. C60: Buckminsterfullerene.. Nature. 1985;318:162–163.
  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669.
  • Baughman RH, Eckhardt H, Kertesz M. Structure-property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms. J Chem Phys. 1987;87:6687–6699.
  • Haley MM, Brand SC, Pak JJ. Carbon networks based on dehydrobenzoannulenes: synthesis of graphdiyne substructures. Angew Chem Int Ed Eng. 1997;36:836.
  • Li G, Li Y, Liu H, et al. Architecture of graphdiyne nanoscale films. Chem Commun. 2010;46:3256–3258.
  • Ivanovskii AL. Graphynes and graphdyines. Prog Sol State Chem. 2013;41:1–19.
  • Kehoe JM, Kiley JH, English JJ, et al. Carbon networks based on dehydrobenzoannulenes. 3. Synthesis of graphyne substructures. Org Lett. 2000;2:969–972.
  • Wang JT, Chen CF, Li HD, et al. Three-dimensional carbon allotropes comprising phenyl rings and acetylenic chains in sp+sp2 hybrid networks. Sci Rep. 2016;6:24665.
  • Hirsch A. The era of carbon allotropes. Nat Mater. 2010;9:868.
  • Jo JY, Kim BG. Carbon allotropes with triple bond predicted by first-principle calculation: Triple bond modified diamond and T-carbon. Phys Rev B. 2012;86:075151.
  • Huang L, Xiang Z, Cao D. A porous diamond carbon framework: a new carbon allotrope with extremely high gas adsorption and mechanical properties. J Mater Chem A. 2013;1:3851.
  • Wang JT, Chen CF, Mizusekid H, et al. New carbon allotropes in sp+sp3 bonding networks consisting of C8 cubes.Phys Chem Chem Phys. 2018;20:7962.
  • Karfunkel HR, Dresslert T. New hypothetical carbon allotropes of remarkable stability estimated by MNDO solid-state SCF computations. J Am Chem Soc. 1992;114:2285–2288.
  • Kuc A, Seifert G. Hexagon-preserving carbon foams: properties of hypothetical carbon allotropes. Phys Rev B. 2006;74:214104.
  • Zhao CX, Niu CY, Qin ZJ, et al. H18 carbon: a new metallic phase with sp2-sp3 hybridized bonding network. Sci Rep. 2016;6:21879.
  • Klett JW, McMillan AD, Gallego NC, et al. The role of structure on the thermal properties of graphitic foams. J Mater Sci. 2004;39:3659–3676.
  • Klett J, Hardy R, Romine E, et al. High-thermal-conductivity, mesophase-pitch-derived carbon foams: effect of precursor on structure and properties. Carbon. 2000;38:953–973.
  • Krainyukova NV, Zubarev EN. Carbon honeycomb high capacity storage for gaseous and liquid species. Phys Rev Lett. 2016;116:055501.
  • Ben T, Ren H, Ma SQ, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew Chem, Int Ed. 2009;48:9457–9460.
  • Armitage NP, Mele EJ, Vishwanath A. Weyl and Dirac semimetals in three-dimensional solids. Rev Mod Phys. 2018;90:15001.
  • Burkov AA, Hook MD, Balents L. Topological nodal semimetals. Phys Rev B. 2011;84:235126.
  • Phillips M, Aji V. Tunable line node semimetals. Phys Rev B. 2014;90:115111.
  • Fang C, Chen Y, Kee HY, et al. Topological nodal line semimetals with and without spin-orbital coupling. Phys Rev B. 2015;92:081201.
  • Kim Y, Wieder BJ, Kane CL, et al. Dirac line nodes in inversion-symmetric crystals. Phys Rev Lett. 2015;115:036806.
  • Yu R, Weng H, Fang Z, et al. Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN. Phys Rev Lett. 2015;115:036807.
  • Volovik GE. From standard model of particle physics to room-temperature superconductivity. Phys Scr. 2015;T164:014014.
  • Heikkila TT, Volovik GE. Nexus and Dirac lines in topological materials. New J Phys. 2015;17:093019.
  • Xie LS, Schoop LM, Seibel EM, et al. A new form of Ca3P2 with a ring of Dirac nodes.APL Mater. 2015;3:083602.
  • Chan YH, Chiu CK, Chou MY, et al. Ca3P2 and other topological semimetals with line nodes and drumhead surface states. Phys Rev B. 2016;93:205132.
  • Yan Z, Wang Z. Tunable weyl points in periodically driven nodal line semimetals. Phys Rev Lett. 2016;117:087402.
  • Chan CK, Oh YT, Han JH, et al. Type-II Weyl cone transitions in driven semimetals. Phys Rev B. 2016;94:121106.
  • Bian G, Chang TR, Sankar R, et al. Topological nodal-line fermions in spin-orbit metal PbTaSe2. Nat Commun. 2016;7:10556.
  • Zhang CL, Yuan ZJ, Bian G, et al. Superconducting properties in single crystals of the topological nodal semimetal PbTaSe2. Phys Rev B. 2016;93:054520.
  • Zhang XM, Yu ZM, Sheng XL, et al. Coexistence of four-band nodal rings and triply degenerate nodal points in centrosymmetric metal diborides. Phys Rev B. 2017;95:235116.
  • Wang Z, Sun Y, Chen XQ, et al. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys Rev B. 2012;85:195320.
  • Zhao JZ, Yu R, Weng H, et al. Topological node-line semimetal in compressed black phosphorus. Phys Rev B. 2016;94:195104.
  • Liang QF, Zhou J, Yu R, et al. Node-surface and node-line fermions from nonsymmorphic lattice symmetries. Phys Rev B. 2016;93:085427.
  • Huang H, Liu J, Vanderbilt D, et al. Topological nodal-line semimetals in alkaline-earth stannides, germanides, and silicides. Phys Rev B. 2016;93:201114.
  • Ronghan L, Hui M, Cheng X, et al. Dirac node lines in pure alkali earth metals. Phys Rev Lett. 2016;117:096401.
  • Hirayama M, Okugawa R, Miyake T, et al. Topological Dirac nodal lines and surface charges in fcc alkaline earth metals. Nat Commun. 2017;8:14022.
  • Mikitik GP, Sharlai YV. Band-contact lines in the electron energy spectrum of graphite. Phys Rev B. 2006;73:235112.
  • Weng H, Liang Y, Xu Q, et al. Topological node-line semimetal in three-dimensional graphene networks. Phys Rev B. 2015;92:045108.
  • Chen Y, Xie Y, Yang SA, et al. Nanostructured carbon allotropes with weyl-like loops and points. Nano Lett. 2015;15:6974–6978.
  • Dong X, Hu M, He JL, et al. A new phase from compression of carbon nanotubes with anisotropic Dirac fermions. Sci Rep. 2015;5:10713.
  • Wang JT, Weng H, Nie S, et al. Body-centered orthorhombic C16: A novel topological node-line semimetal. Phys Rev Lett. 2016;116:195501.
  • Cheng Y, Du J, Melnik R, et al. Novel three dimensional topological nodal line semimetallic carbon. Carbon. 2016;98:468–473.
  • Cheng Y, Feng X, Cao XT, et al. Body-centered tetragonal C16: A novel topological node-line semimetallic carbon composed of tetrarings. Small. 2017; 13:1602894.
  • Li ZZ, Chen J, Nie SM, et al. Orthorhombic carbon oC24: A novel topological nodal line semimetal. Carbon. 2018;133:39–43.
  • Feng X, Wu QS, Cheng Y, et al. Monoclinic C16: sp2-sp3 hybridized nodal-line semimetal protected by PT-symmetry.Carbon. 2018;127:527–532.
  • Wang JT, Chen CF, Kawazoe Y. Topological nodal line semimetal in an orthorhombic graphene network structure. Phys Rev B. 2018;97:245147.
  • Wang JT, Nie SM, Weng H, et al. Topological nodal-net semimetal in a graphene network structure. Phys Rev Lett. 2018;120:026402.
  • Hyart T, Ojajärvi R, Heikkilä TT. Two topologically distinct dirac-line semimetal phases and topological phase transitions in rhombohedrally stacked honeycomb lattices. J Low Temp Phys. 2018;191:35–48.
  • Neto AC, Guinea F, Peres N, et al. The electronic properties of graphene. Rev Mod Phys. 2009;81:109.
  • Balandin AA, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8:902-907.
  • Lee C, Wei X, Kysar JW, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321:385–388.
  • Geim AK. Graphene: status and prospects. Science. 2009;324:1530–1534.
  • Novoselov KS, Geim AK, Morozov SV, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 2005;438:197–200.
  • Naumis GG, Barraza-Lopez S, Oliva-Leyva M, et al. Electronic and optical properties of strained graphene and other strained 2D materials: a review. Rep Prog Phys. 2017;80:096501.
  • Malko D, Neiss C, Viñes F, et al. Competition for graphene: graphynes with direction-dependent dirac cones. Phys Rev Lett. 2012;108:086804.
  • Tagami M, Liang Y, Naito H, et al. Negatively curved cubic carbon crystals with octahedral symmetry. Carbon. 2014;76:266–274.
  • Qi XL, Zhang SC. Topological insulators and superconductors. Rev Mod Phys. 2011;83:1057.
  • Ito Y, Tanabe Y, Qiu HJ, et al. High-quality three-dimensional nanoporous graphene. Ang Chem. 2014;126:4922.
  • Kopnin NB, Heikkila TT, Volovik GE. High-temperature surface superconductivity in topological flat-band systems. Phys Rev B. 2011;83:220503.
  • David WIF, Ibberson RM, Matthewman JC, et al. Crystal structure and bonding of ordered C60. Nature. 1991;353:147–149.
  • Chen PW, Huang FL, Yun SR. Characterization of the condensed carbon in detonation soot. Carbon. 2003;41:2093–2099.
  • Pantea D, Brochu S, Thiboutot S, et al. A morphological investigation of soot produced by the detonation of munitions. Chemosphere. 2006;65:821–831.
  • Vereshchagin AL, Yur’ev GS. Structure of detonation diamond nanoparticles. Inorg Mater. 2003;39:312–318.
  • Wang JT, Chen CF, Wang DS, et al. Phase stability of carbon clathrates at high pressure. J Appl Phys. 2010;107:063507.
  • Lian CS, Wang JT. Three-dimensional polymeric structures of single-wall carbon nanotubes. J Chem Phys. 2014;140:204709.
  • The polymeric (3,3) CNT in Figure 8(a) contains two (3,3) CNTs in Imma symmetry. The lattice parameters are a = 8.536 Å, b = 2.485 Å, and c = 9.025 Å, occupying the 8i (0.4216, 0.25. 0.2341), 8i (0.1979, 0.25, 0.5374), and 8i (0.1711, 0.25, 0.7057) Wyckoff positions. It is a semicondutor with a direct band gap of 0.32 eV at the R point of the Brillouin zone.
  • Wu QS, Zhang SN, Song HF, et al. WannierTools: an open-source software package for novel topological materials. Comput Phys Commun. 2018;224:405–416.
  • Mostofi AA, Yates JR, Lee YS, et al. Wannier90: A tool for obtaining maximally-localised Wannier functions. Comput Phys Commun. 2008;178:685–699.
  • Weng H, Dai X, Fang Z. Topological semimetals predicted from first-principles calculations. J Phys Condens Matter. 2016;28:303001.
  • Fang C, Weng H, Dai X, et al. Topological nodal line semimetals. Chin Phys B. 2016;25:117106.
  • Bzdusek T, Wu Q, Ruegg A, et al.Nodal-chain metals. Nature. 2016;538:75–78.
  • Zhong CY, Chen YP, Xie Y, et al. Towards three-dimensional Weyl-surface semimetals in graphene networks. Nanoscale. 2016;8:7232–7239.
  • Hyart T, Heikkila TT. Momentum-space structure of surface states in a topological semimetal with a nexus point of Dirac lines. Phys Rev B. 2016;93:235147.
  • Kresse G, Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54:11169.
  • Armiento R, Mattsson AE. Functional designed to include surface effects in self-consistent density functional theory. Phys Rev B. 2005;72:085108.
  • Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50:17953.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865.
  • Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened coulomb potential. J Chem Phys. 2006;124:219906.
  • Zhong CY, Chen YP, Yu ZM, et al. Three-dimensional pentagon carbon with a genesis of emergent fermions. Nat Commun. 2017;8:15641.
  • Chen W, Lado JL. Interaction-driven surface Chern insulator in nodal line semimetals. Phys Rev Lett. 2019;122:016803.
  • Cao Y, Fatemi V, Fang S, et al. Correlated insulator behaviour at Half-filling in magic-angle graphene superlattices. Nature. 2018;556:80-84.
  • Cao Y, Fatemi V, Demir A, et al. Unconventional superconductivity in magic-angle graphene superlattices.Nature. 2018;556:43-50.