3,578
Views
21
CrossRef citations to date
0
Altmetric
Review Articles

Review on vortex beams with low spatial coherence

, &
Article: 1626766 | Received 21 Apr 2019, Accepted 28 May 2019, Published online: 30 Jun 2019

References

  • Maiman TH. Stimulated optical radiation in ruby. Nature. 1960;187:507–528.
  • Born M, Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Cambridge: Cambridge University Press; 1999.
  • Mandel L, Wolf E. Optical coherence and quantum optics. Cambridge: Cambridge University Press; 1995.
  • Wolf E. Introduction to the theory of coherence and polarization of light. Cambridge: Cambridge University Press; 2007.
  • Cai Y, Chen Y, Yu J, et al. Generation of partially coherent beams. Prog Opt. 2017;62:157–223.
  • Ricklin JC, Davidson FM. Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication. J Opt Soc Am A. 2002;19:1794–1802.
  • Wang F, Cai Y, Eyyuboğlu HT, et al. Twist phase-induced reduction in scintillation of a partially coherent beam in turbulent atmosphere. Opt Lett. 2012;37:184–186.
  • Wang F, Liu X, Liu L, et al. Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence. Appl Phys Lett. 2013;103:091102.
  • Cai Y, Chen Y, Eyyuboğlu HT, et al. Scintillation index of elliptical Gaussian beam in turbulent atmosphere. Opt Lett. 2007;32:2405–2407.
  • Aksenov VP, Kolosov VV, Pogutsa CE. The influence of the vortex phase on the random wandering of a Laguerre-Gaussian beam propagating in a turbulent atmosphere: a numerical experiment. J Opt. 2013;15:044007.
  • Liu X, Wang F, Wei C, et al. Experimental study of turbulence-induced beam wander and deformation of a partially coherent beam. Opt Lett. 2014;39:3336–3339.
  • Kato Y, Mima K, Miyanaga N, et al. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Phys Rev Lett. 1984;53:1057.
  • Beléndez A, Carretero L, Fimia A. The use of partially coherent light to reduce the efficiency of silver halide noise gratings. Opt Commun. 1993;98:236–240.
  • Cai Y, Zhu SY. Ghost imaging with incoherent and partially coherent light radiation. Phys Rev E. 2005;71:056607.
  • Zhao C, Cai Y, Lu X, et al. Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle. Opt Express. 2009;17:1753–1765.
  • Zhang JF, Wang ZY, Cheng B, et al. Atom cooling by partially spatially coherent lasers. Phys Rev A. 2013;88:023416.
  • Zubairy MS, Mciver JK. Second-harmonic generation by a partially coherent beam. Phys Rev A. 1987;36:202–206.
  • Cai Y, Peschel U. Second-harmonic generation by an astigmatic partially coherent beam. Opt Express. 2007;15:15480–15492.
  • Van DT, Fischer DG, Visser TD, et al. Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere. Phys Rev Lett. 2010;104:173902.
  • Ding C, Cai Y, Korotkova O, et al. Scattering-induced changes in the temporal coherence width and the pulse duration of a partially coherent plane-wave pulse. Opt Lett. 2011;36:517–519.
  • Kermisch D. Partially coherent image processing by laser scanning. J Opt Soc Am. 1975;65:887–891.
  • Gori F, Guattari G, Padovani C. Modal expansion for J0-correlated Schell-model sources. Opt Commun. 1987;64:311–316.
  • Gori F, Santarsiero M. Devising genuine spatial correlation functions. Opt Lett. 2007;32:3531–3533.
  • Gori F, Ramirezsanchez V, Santarsiero M, et al. On genuine cross-spectral density matrices. J Opt A. 2009;11:85706–85707.
  • Sahin S, Korotkova O. Light sources generating far fields with tunable flat profiles. Opt Lett. 2012;37:2970–2972.
  • Wang F, Liu X, Yuan Y, et al. Experimental generation of partially coherent beams with different complex degrees of coherence. Opt Lett. 2013;38:1814–1816.
  • Mei Z, Korotkova O. Random sources generating ring-shaped beams. Opt Lett. 2013;38:91–93.
  • Chen Y, Liu L, Wang F, et al. Elliptical Laguerre-Gaussian correlated Schell-model beam. Opt Express. 2014;22:13975–13987.
  • Liang C, Wang F, Liu X, et al. Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry. Opt Lett. 2014;39:769–772.
  • Tong Z, Korotkova O. Electromagnetic nonuniformly correlated beams. J Opt Soc Am A. 2012;29:2154–2158.
  • Lajunen H, Saastamoinen T. Non-uniformly correlated partially coherent pulses. Opt Express. 2013;21:190–195.
  • Wang F, Chen Y, Liu X, et al. Self-reconstruction of partially coherent light beams scattered by opaque obstacles. Opt Express. 2016;24:23735–23746.
  • Cai Y, Chen Y, Wang F. Generation and propagation of partially coherent beams with nonconventional correlation functions: a review [Invited]. J Opt Soc Am A. 2014;31:2083–2096.
  • Yao AM, Padgett MJ. Orbital angular momentum: origins, behavior and applications. Adv Opt Photon. 2011;3:161–204.
  • Nye J, Berry M. Dislocations in wave trains. Prog Roy Soc A. 1974;336:165–190.
  • Soskin M, Vasnetsov M. Singular optics. Prog Opt. 2001;42:219–276.
  • Gj G. Singular optics. Boca Raton: CRC Press; 2017.
  • Allen L, Beijersbergen MW, Spreeuw RJC, et al. Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A. 1992;45:8185–8189.
  • Allen L, Padgett M, Babiker M. The orbital angular momentum of light. Prog Opt. 1999;39:291–372.
  • Grier DG. A revolution in optical manipulation. Nature. 2003;424:810–816.
  • O’Neil AT, Padgett MJ. Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers. Opt Commun. 2001;193:45–50.
  • Ng J, Lin Z, Chan C. Theory of optical trapping by an optical vortex beam. Phys Rev Lett. 2010;104:103601.
  • Wang X, Rui G, Gong L, et al. Manipulation of resonant metallic nanoparticle using 4Pi focusing system. Opt Express. 2016;24:24143–24152.
  • Chen J, Wan C, Kong LJ, et al. Tightly focused optical field with controllable photonic spin orientation. Opt Express. 2017;25:19517–19528.
  • Gu Y, Gbur G. Measurement of atmospheric turbulence strength by vortex beam. Opt Commun. 2010;283:1209–1212.
  • Li X, Tai Y, Zhang L, et al. Characterization of dynamic random process using optical vortex metrology. Appl Phys B. 2014;116:901–909.
  • Lavery MPJ, Speirits FC, Barnett SM, et al. Detection of a spinning object using light’s orbital angular momentum. Science. 2013;341:537–540.
  • Nagali E, Sciarrino F, De Martini F, et al. Quantum information transfer from spin to orbital angular momentum of photons. Phys Rev Lett. 2009;103:013601.
  • Wang J, Yang J, Fazal IM, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photon. 2012;6:488–496.
  • Paterson C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys Rev Lett. 2005;94:153901.
  • Thidé B, Then H, Sjöholm J, et al. Utilization of photon orbital angular momentum in the low-frequency radio domain. Phys Rev Lett. 2007;99:087701.
  • Tamburini F, Anzolin G, Umbriaco G, et al. Overcoming the Rayleigh criterion limit with optical vortices. Phys Rev Lett. 2006;97:163903.
  • Yu W, Ji Z, Dong D, et al. Super-resolution deep imaging with hollow Bessel beam STED microscopy. Laser Photon Rev. 2016;10:147–152.
  • Zhu K, Zhou G, Li X, et al. Propagation of Bessel-Gaussian beams with optical vortices in turbulent atmosphere. Opt Express. 2008;16:21315–21320.
  • Schwarz U, Sogomonian S, Maier M. Propagation dynamics of phase dislocations embedded in a Bessel light beam. Opt Commun. 2002;208:255–262.
  • Orlov S, Regelskis K, Smilgevičius V, et al. Propagation of Bessel beams carrying optical vortices. Opt Commun. 2002;209:155–165.
  • Flossmann F, Schwarz U, Maier M. Propagation dynamics of optical vortices in Laguerre–gaussian beams. Opt Commun. 2005;250:218–230.
  • Yang Y, Dong Y, Zhao C, et al. Generation and propagation of an anomalous vortex beam. Opt Lett. 2013;38:5418–5421.
  • Vaity P, Rusch L. Perfect vortex beam: fourier transformation of a Bessel beam. Opt Lett. 2015;40:597–600.
  • Li P, Zhang Y, Liu S, et al. Generation of perfect vectorial vortex beams. Opt Lett. 2016;41:2205–2208.
  • Chen W, Zhan Q. Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam. Opt Lett. 2009;34:722–724.
  • Zhan Q. Properties of circularly polarized vortex beams. Opt Lett. 2006;31:867–869.
  • Kristensen M, Beijersbergen MW, Woerdman JP. Angular momentum and spin-orbit coupling for microwave photons. Opt Commun. 1994;104:229–233.
  • Beijersbergen MW, Coerwinkel RPC, Kristensen M, et al. Helical-wavefront laser beams produced with a spiral phaseplate. Opt Commun. 1994;112:321–327.
  • Turnbull GA, Robertson DA, Smith GM, et al. The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate. Opt Commun. 1996;127:183–188.
  • Hariharan P. Optical holography. Cambridge: Cambridge University Press; 1996.
  • Leith EN, Upatnieks J. Reconstructed wavefronts and communication theory. J Opt Soc Am A. 1962;52:1123–1130.
  • Leith EN, Upatnieks J. Wavefront reconstruction with continuous-tone objects. J Opt Soc Am A. 1963;53:1377–1381.
  • Beijersbergen MW, Allen L, van der Veen HELO, et al. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt Commun. 1996;96:183–188.
  • Padgett M, Arlt J, Simpson N. An experiment to observe the intensity and phase structure of Laguerre-Gaussian laser modes. Am J Phys. 1996;64:77–82.
  • Li S, Mo Q, Hu X, et al. Controllable all-fiber orbital angular momentum mode converter. Opt Lett. 2015;40.
  • Du C, Wang J, Mo Q. Controllable all-fiber orbital angular momentum mode converter. Opt Lett. 2015;40:4376–4379.
  • Karimi E, Schulz SA, De Leon I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci Appl. 2014;3:e167.
  • Platt BC, Shack R. History and principle of Shack-Hartmann wavefront sensing. J Refract Srug. 2001;17:S573–S577.
  • Leach J, Keen S, Padgett MJ, et al. Direct measurement of the skew angle of the Poynting vector in a helically phased beam. Opt Express. 2006;14:11919–11924.
  • Chen M, Roux FS, Olivier JC. Detection of phase singularities with a Shack-Hartmann wavefront sensor. J Opt Soc Am A. 2007;24:1994–2002.
  • Luo J, Huang H, Matsui Y, et al. High-order optical vortex position detection using a Shack-Hartmann wavefront sensor. Opt Express. 2015;23:8706–8719.
  • Berkhout GC, Beijersbergen MW. Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects. Phys Rev Lett. 2008;101:100801.
  • Sztul H, Alfano R. Double-slit interference with Laguerre-Gaussian beams. Opt Lett. 2006;31:999–1001.
  • Harris M, Hill CA, Tapster PR, et al. Laser modes with helical wave fronts. Phys Rev A. 1994;49:3119.
  • Hickmann J, Fonseca E, Soares W, et al. Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum. Phys Rev Lett. 2010;105:053904.
  • De Araujo LE, Anderson ME. Measuring vortex charge with a triangular aperture. Opt Lett. 2011;36:787–789.
  • Berkhou GCG, Lavery MPJ, Courtial J, et al. Efficient sorting of orbital angular momentum states of light. Phys Rev Lett. 2010;105:153601.
  • Schulze C, Dudley A, Flamm D, et al. Measurement of the orbital angular momentum density of light by modal decomposition. New J Phys. 2013;15:073025.
  • Araujo LEE, Anderson ME. Measuring vortex charge with a triangular aperture. Opt Lett. 2011;36:787–789.
  • Liu R, Long J, Wang F, et al. Characterizing the phase profile of a vortex beam with angular-double-slit interference. J Opt. 2013;15:125712.
  • Fu D, Chen D, Liu R, et al. Probing the topological charge of a vortex beam with dynamic angular double slits. Opt Lett. 2015;40:788–791.
  • Guo CS, Yue SJ, Wei GX. Measuring the orbital angular momentum of optical vortices using a multipinhole plate. Appl Phys Lett. 2009;94:231104.
  • Denisenko V, Shvedov V, Desyatnikov AS, et al. Determination of topological charges of polychromatic optical vortices. Opt Express. 2009;17:23374–23379.
  • Kotlyar VV, Kovalev AA, Porfirev AP. Astigmatic transforms of an optical vortex for measurement of its topological charge. Appl Opt. 2017;56:4095–4104.
  • Vinu RV, Singh RK. Determining helicity and topological structure of coherent vortex beam from laser speckle. Appl Phys Lett. 2016;109:111108.
  • Prabhakar S, Kumar A, Banerji J, et al. Revealing the order of a vortex through its intensity record. Opt Lett. 2011;36:4398–4400.
  • Zhao P, Li S, Feng X, et al. Measuring the complex orbital angular momentum spectrum of light with a mode-matching method. Opt Lett. 2017;42:1080–1083.
  • Dudley A, Litvin IA, Forbes A. Quantitative measurement of the orbital angular momentum density of light. Appl Opt. 2012;51:823–833.
  • Zhou HL, Fu DZ, Dong JJ, et al. Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect. Light Sci Appl. 2017;6:e16251.
  • Golub MA, Prokhorov AM, Sisakyan IN, et al. Synthesis of spatial filter for investigation of the transverse mode composition of coherent radiation. Sov J Quantum Electron. 1982;12:1208–1209.
  • Golub MA, Karpeev SV, Krivoshlykov SG, et al. Experimental investigation of spatial filters separating transverse modes of optical fields. Sov J Quantum Electron. 1983;13:1123–1124.
  • Golub MA, Karpeev SV, Krivoshlykov SG, et al. Spatial filter investigation of the distribution of power between transverse modes in a fiber waveguide. Sov J Quantum Electron. 1984;14:1255–1256.
  • Yang Y, Dong Y, Zhao C, et al. Autocorrelation properties of fully coherent beam with and without orbital angular momentum. Opt Express. 2014;2:2925–2932.
  • Gori F, Santarsiero M, Borghi R, et al. Partially coherent sources with helicoidal modes. J Mod Opt. 1998;45:539–554.
  • Ponomarenko SA. A class of partially coherent beams carrying optical vortices. J Opt Soc Am A. 2001;18:150–156.
  • Boggatyryova VG, Felde VC, Polyanskii PV, et al. Partially coherent vortex beams with a separable phase. Opt Lett. 2003;28:878–880.
  • Palacios D, Maleev I, Marathay A, et al. Spatial correlation singularity of a vortex field. Phys Rev Lett. 2004;92:143905.
  • Gbur G, Visser TD, Wolf E. ‘Hidden’ singularities in partially coherent wavefields. J Opt A Pure Appl Opt. 2004;6:S239–S242.
  • Visser TD, Gbur G, Wolf E. Effect of the state of coherence on the three-dimensional spectral intensity distribution near focus. Opt Commun. 2002;213:13–19.
  • Bouchal Z, Perina J. Non-diffracting beams with controlled spatial coherence. Opt Acta Int J Opt. 2002;49:1673–1689.
  • Gbur G, Visser TD. Coherence vortices in partially coherent beams. Opt Commun. 2003;222:117–125.
  • Ponomarenko SA. A class of partially coherent beams carrying optical vortices. J Opt Soc Am A. 2001;18:150–156.
  • Maleev ID, Palacios DM, Marathay AS, et al. Spatial correlation vortices in partially coherent light: theory. J Opt Soc Am B. 2004;21:1895–1900.
  • Jeng CC, Shih MF, Motzek K, et al. Partially incoherent optical vortices in self-focusing nonlinear media. Phys Rev Lett. 2004;92:043904.
  • Schouten HF, Visser TD, Dijk TV. Evolution of singularities in a partially coherent vortex beam. J Opt Soc Am A. 2009;26:741–744.
  • Wang F, Zhu S, Cai Y. Experimental study of the focusing properties of a Gaussian Schell-model vortex beam. Opt Lett. 2011;36:3281–3283.
  • Yang Y, Chen M, Mazilu M, et al. Effect of the radial and azimuthal mode indices of a partially coherent vortex field upon a spatial correlation singularity. New J Phys. 2013;15:113053.
  • Zhang Z, Fan H, Xu HF, et al. Three-dimensional focus shaping of partially coherent circularly polarized vortex beams using a binary optic. J Opt. 2015;17:065611.
  • Ostrovsky AS, Garcíagarcía J, Rickenstorffparrao C, et al. Partially coherent diffraction-free vortex beams with a Bessel-mode structure. Opt Lett. 2017;42:5182–5185.
  • Singh RK, Sharma AM, Senthilkumaran P. Vortex array embedded in a partially coherent beam. Opt Lett. 2015;40:2751–2754.
  • Stahl C, Gbur G. Partially coherent vortex beams of arbitrary order. J Opt Soc Am A. 2017;34:1793–1799.
  • Liu D, Wang Y, Yin H. Evolution properties of partially coherent flat-topped vortex hollow beam in oceanic turbulence. Appl Opt. 2015;54:10510.
  • Qin Z, Tao R, Zhou P, et al. Propagation of partially coherent Bessel–gaussian beams carrying optical vortices in non-Kolmogorov turbulence. Opt Laser Technol. 2014;56:182–188.
  • Cheng M, Guo L, Li J, et al. Propagation of an optical vortex carried by a partially coherent Laguerre-Gaussian beam in turbulent ocean. Appl Opt. 2016;55:4642–4648.
  • Zhang Y, Ma D, Zhou Z, et al. Research on partially coherent flat-topped vortex hollow beam propagation in turbulent atmosphere. Appl Opt. 2017;56:2922–2926.
  • Liu D, Yin H, Wang G, et al. Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence. Appl Opt. 2017;56:8785–8792.
  • Chen Y, Wang F, Zhao C, et al. Experimental demonstration of a Laguerre-Gaussian correlated Schell-model vortex beam. Opt Express. 2014;22:5826–5838.
  • Liu X, Liu L, Peng X, et al. Partially coherent vortex beam with periodical coherence properties. J Quant Spectrosc Ra. 2019;222–223:138–144.
  • Liu X, Wang F, Liu L, et al. Generation and propagation of an electromagnetic Gaussian Schell-model vortex beam. J Opt Soc Am A. 2015;32:2058–2065.
  • Guo L, Chen Y, Liu X, et al. Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam. Opt Express. 2016;24:13714–13728.
  • Simon R, Mukunda N. Twisted Gaussian Schell-model beams. J Opt Soc Am A. 1993;10:95–109.
  • Peng X, Liu L, Wang F, et al. Twisted Laguerre-Gaussian Schell-model beam and its orbital angular moment. Opt Express. 2018;26:33956–33969.
  • Lin Q, Cai Y. Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams. Opt Lett. 2002;27:216–218.
  • Chen J, Zhang E, Peng X, et al. Efficient tensor approach for simulating paraxial propagation of arbitrary partially coherent beams. Opt Express. 2017;25:24780–24789.
  • Chen J, Liu X, Yu J, et al. Simultaneous determination of the sign and the magnitude of the topological charge of a partially coherent vortex beam. Appl Phys B. 2016;122:1–12.
  • Maleev ID, Palacios DM, Marathay AS, et al. Spatial correlation vortices in partially coherent light: theory. J Opt Soc Am B. 2004;21:1895–1900.
  • Maleev ID, SwartzlandSwartzlander, Jr. GA. Propagation of spatial correlation vortices. J Opt Soc Am B. 2008;25:915–922.
  • Swartzlander GA, Schmit J. Temporal correlation vortices and topological dispersion. Phys Rev Lett. 2004;93:093901.
  • van Dijk T, Visser TD. Evolution of singularities in a partially coherent vortex beam. J Opt Soc Am A. 2009;26:741–744.
  • Gu Y, Gbur G. Topological reactions of optical correlation vortices. Opt Commmun. 2009;282:709–716.
  • Liu X, Shen Y, Liu L, et al. Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam. Opt Lett. 2013;38:5323–5326.
  • Zeng J, Liu X, Wang F, et al. Partially coherent fractional vortex beam. Opt Express. 2018;26:26830–26844.
  • Wolf E. New theory of partial coherence in the space-frequency domain. J Opt Soc Am. 1980;70:1622.
  • Xiao X, Voelz D. Wave optics simulation approach for partial spatially coherent beams. Opt Express. 2006;14:6986–6992.
  • Qian X, Zhu W, Rao R. Numerical investigation on propagation effects of pseudo-partially coherent Gaussian Schell-model beams in atmospheric turbulence. Opt Express. 2009;17:3782–3791.
  • Zhang Y, Ma D, Zhou Z, et al. The research on partially coherent flat-topped vortex hollow beams propagation in turbulent atmosphere. Appl Opt. 2017;56:2922–2926.
  • Hyde MWH Iv, Basu S, Xiao X, et al. Producing any desired far-field mean irradiance pattern using a partially-coherent Schell-model source. J Opt. 2015;17:055607.
  • Wang F, Yu J, Liu X, et al. Research progress in propagation of partially coherent beams in turbulent atmosphere. Acta Phys Sin. 2018;67:184203.
  • Zhao C, Wang F, Dong Y, et al. Effect of spatial coherence on determining the topological charge of a vortex beam. Appl Phys Lett. 2012;101:261104.
  • Liu X, Peng X, Liu L, et al. Self-reconstruction of the degree of coherence of a partially coherent vortex beam obstructed by an opaque obstacle. Appl Phys Lett. 2017;110:181104.
  • Bouchal Z, Wagner J, Chlup M. Self-reconstruction of a distorted nondiffracting beam. Opt Commun. 1998;151:207–211.
  • Wu G, Wang F, Cai Y. Generation and self-healing of a radially polarized Bessel-Gaussian beam. Phys Rev A. 2014;89:043807.
  • Broky J, Siviloglou GA, Dogariu A, et al. Self-healing properties of optical Airy beams. Opt Express. 2008;16:12880–12885.
  • Garces-Chavez V, McGloin D, Melville H, et al. Simultaneous micromanipulation in several planes using a self-reconstructing light beam. Nature. 2002;419:145–147.
  • Fahrbach FO, Simon P, Rohrbach A. Microscopy with self-reconstructing beam. Nat Photon. 2010;4:780–786.
  • Chen X, Li J, Rafsanjani SMH, et al. Synthesis of Im-Bessel correlated beams via coherent modes. Opt Lett. 2018;43:3590–3593.
  • Zhu X, Wang F, Zhao C, et al. Experimental realization of dark and antidark diffraction-free beams. Opt Lett. 2019.
  • Zhao C, Dong Y, Wang Y, et al. Experimental generation of a partially coherent Laguerre-Gaussian beam. Appl Phys B. 2012;109:345–349.
  • Liu R, Wang F, Chen D, et al. Measuring mode indices of a partially coherent vortex beam with Hanbury Brown and Twiss type experiment. App Phys Lett. 2016;108:051107.
  • Perez-Garcia B, Yepiz A, Hernandez-Aranda RI, et al. Digital generation of partially coherent vortex beams. Opt Lett. 2016;41:3471.
  • Yang Y, Liu Y. Measuring azimuthal and radial mode indices of a partially coherent vortex field. J Opt. 2016;18:015604.
  • Liu X, Wu T, Liu L, et al. Experimental determination of the azimuthal and radial mode orders of a partially coherent LGpl beam. Chin Opt Lett. 2017;15:030002.
  • Lu X, Zhao C, Shao Y, et al. Phase detection of coherence singularities and determination of the topological charge of a partially coherent vortex beam. Appl Phys Lett. 2019.
  • Chen J, Li Y. Discrimination of incoherent vortex states of light. Opt Lett. 2018;43:5595–5598.