1,263
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Developments of cation-exchange by in situ electron microscopy

&
Article: 1633957 | Received 26 Mar 2019, Accepted 16 Jun 2019, Published online: 01 Jul 2019

References

  • Freitag B, Knippels G, Kujawa S, et al. First performance measurements and application results of a new high brightness Schottky field emitter for HR-S/TEM at 80-300kV acceleration voltage. Microsc Microanal. 2008;14:529–553.
  • Haider M, Uhlemann S, Schwan E, et al. Electron microscopy image enhanced. Nature. 1998;392:768–769.
  • Krivanek OL, Dellby N, Lupini AR. Towards sub-Angstrom eelectron beams. Ultramicroscopy. 1999;78:1–11.
  • Gubbens A, Barfels M, Trevor C, et al. The GIF quantum, a next generation post-column imaging energy filter. Ultramicroscopy. 2010;110:962–970.
  • Von Harrach HS, Dona P, Freitag B, et al. An integrated multiple silicon drift detector system for transmission electron microscopes. J Phys: Conf Ser. 2010;241:012015.
  • Ruskina RS, Yub Z, Grigorieff N. Quantitative characterization of electron detectors for transmission electron microscopy. J Struct Biol. 2013;184:385–393.
  • Casu A, Sogne E, Genovese A, et al. The new youth of the in situ transmission electron microscopy. In: Stanciu SG, editor. Microscopy and analysis. ISBN 978-953-51-2579-2, InTech Editions; 2016. DOI:10.5772/63269
  • Zheng H, Meng YS, Zhu Y. Frontiers of in situ electron microscopy. MRS Bull. 2015;40:12–18.
  • Taheri ML, Stach EA, Arslan I, et al. Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy. 2016;170:86–95.
  • Hansen TW, Wagner JB, Eds.. Controlled atmosphere transmission electron microscopy. Springer International Editing; 2016. DOI:10.1007/978-3-319-22988-1
  • Ruault MO, Chaumont J, Bernas H. Transmission electron microscopy study of ion implantation induced Si amorphization. Nucl Instrum Methods Phys Res. 1983;209:351–356.
  • Heinemann K, Poppa H. Direct observation of small cluster mobility and ripening. Thin Solid Films. 1976;33:237–251.
  • Chen SH, Zheng LR, Carter CB, et al. Transmission electron microscopy studies on the lateral growth of nickel silicides. J Appl Phys. 1985;57:258–263.
  • Dannenberg R, Stach E, Groza JR, et al. TEM annealing study of normal grain growth in silver thin films. Thin Solid Films. 2000;379:133–138.
  • Zhang M, Olson EA, Twesten RD, et al. In situ transmission electron microscopy studies enabled by microelectromechanical system technology. J Mater Res. 2005;20:1802–1807.
  • Allard LF, Bigelow WC, Jose-Yacaman M, et al. A new MEMS-based system for ultra-high-resolution imaging at elevated temperatures. Microsc Res Tech. 2009;72:208–215.
  • Milliron DJ, Hughes SM, Cui Y, et al. Colloidal nanocrystal heterostructures with linear and branched topology. Nature. 2004;430:190–195.
  • Pang X, Zhao L, Han W, et al. A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals. Nat Nanotechnol. 2013;8:426–431.
  • Costi R, Saunders AE, Banin U. Colloidal hybrid nanostructures: a new type of functional materials. Angew Chem Int Ed. 2010;49:4878–4897.
  • Yin Y, Alivisatos AP. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature. 2005;437:664–670.
  • Gupta S, Kershaw SV, Rogach AL. 25th Anniversary article: ion exchange in colloidal nanocrystals. Adv Mater. 2013;25:6923−6944.
  • Son DH, Hughes SM, Yin YD, et al. Cation exchange reactions in ionic nanocrystals. Science. 2004;306:1009−1012.
  • De Trizio L, Manna L. Forging colloidal nanostructures via cation exchange reactions. Chem Rev. 2016;116:10852–10887.
  • Beberwyck BJ, Surendranath Y, Alivisatos AP. Cation exchange: a versatile tool for nanomaterials synthesis. J Phys Chem C. 2013;117:19759−19770.
  • Rivest JB, Jain PK. Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem Soc Rev. 2013;42:89−96.
  • Luther JM, Zheng HM, Sadtler B, et al. Synthesis of PbS nanorods and other ionic nanocrystals of complex morphology by sequential cation exchange reactions. J Am Chem Soc. 2009;131:16851−16857.
  • Li H, Zanella M, Genovese A, et al. Sequential cation exchange in nanocrystals: preservation of crystal phase and formation of metastable phases. Nano Lett. 2011;11:4964–4970.
  • Figuerola A, van Huis M, Zanella M, et al. Epitaxial CdSe-Au nanocrystal heterostructures by thermal annealing. Nano Lett. 2010;10:3028–3036.
  • De Trizio L, Figuerola A, Manna L, et al. Size-tunable, hexagonal plate-like Cu3P and Janus-like Cu-Cu3P nanocrystals. ACS Nano. 2012;6:32–41.
  • De Trizio L, De Donato CA, Genovese A, et al. Colloidal CdSe/Cu3P/CdSe and their evolution upon thermal annealing. ACS Nano. 2013;7:3997–4005.
  • Casu A, Genovese A, Manna L, et al. Cu2Se and Cu nanocrystals as local sources of copper in thermally activated in situ cation exchange. ACS Nano. 2016;10:2406–2414.
  • Comin A, Manna L. New materials for tunable plasmonic colloidal nanocrystals. Chem Soc Rev. 2014;43:3957−3975.
  • Dorfs D, Härtling T, Miszta K, et al. Reversible tunability of the near-infrared valence band plasmon resonance in Cu2‑xSe nanocrystals. J Am Chem Soc. 2011;133:11175−11180.
  • Kriegel I, Jiang C, Rodríguez-Fernández J, et al. Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals. J Am Chem Soc. 2012;134:1583−1590.
  • Yalcin AO, Fan Z, Goris B, et al. Atomic resolution monitoring of cation exchange in CdSe-PbSe heteronanocrystals during epitaxial solid–solid–vapor growth. Nano Lett. 2014;14:3661–3667.
  • Buha J, Manna L. Solid state intercalation, deintercalation, and cation exchange in colloidal 2D Bi2Se3 and Bi2Te3 nanocrystals. Chem Mater. 2017;29:1419−1429.
  • Zhang Q, Yin K, Dong H, et al. Electrically driven cation exchange for in situ fabrication of individual nanostructures. Nat Commun. 2017;8:14889.
  • de Jonge N, Peckys DB, Kremers GJ, et al. Electron microscopy of whole cells in liquid with nanometer resolution. PNAS. 2009;106:2159–2164.
  • de Jonge N, Ross FM. Electron microscopy of specimens in liquid. Nat Nanotech. 2011;6:695–704.
  • Fan Z, Lin LC, Buijs W, et al. Atomistic understanding of cation exchange in PbS nanocrystals using simulations with pseudoligands. Nat Commun. 2016;7.