1,838
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Reactive force field simulations of silicon clusters

, , &
Article: 1634487 | Received 25 Mar 2019, Accepted 24 May 2019, Published online: 27 Jun 2019

References

  • Leach AR. Molecular modelling : principles and applications. Pearson  Education; 2 edition (2001), Harlow, England.
  • Van Duin ACT, Dasgupta S, Lorant F, et al. ReaxFF: A reactive force field for hydrocarbons. J Phys Chem A. 2001;105:490–506.
  • Senftle TP, Hong S, Islam MM, et al. The ReaxFF reactive force-field: development, applications and future directions. Npj Comput Mater. 2016;2:15011.
  • Goddard WA, Van Duin ACT, Strachan A, et al. ReaxFFSiO reactive force field for silicon and silicon oxide systems. J Phys Chem A. 2003;107:3803–3811.
  • Buehler MJ, van Duin ACT, Goddard WA. Multiparadigm modeling of dynamical crack propagation in silicon using a reactive force field. Phys Rev Lett. 2006;96:095505.
  • Buehler MJ, Tang H, van Duin ACT, et al. Threshold crack speed controls dynamical fracture of silicon single crystals. Phys Rev Lett. 2007;99:165502.
  • Naserifar S, Liu L, Goddard WA, et al. Toward a process-based molecular model of SiC membranes. 1. Development of a reactive force field. J Phys Chem C. 2013;117:3308–3319.
  • Jaramillo-Botero A, Naserifar S, Goddard WA. General multiobjective force field optimization framework, with application to reactive force fields for silicon carbide. J Chem Theory Comput. 2014;10:1426–1439.
  • Motevalian SP, Aro SC, Cheng HY, et al. Kinetics of silane decomposition in high-pressure confined chemical vapor deposition of hydrogenated amorphous silicon. Ind Eng Chem Res. 2017;56:14995–15000.
  • Hahn SH, Rimsza J, Criscenti L, et al. Development of a ReaxFF reactive force field for NaSiO x/water systems and its application to sodium and proton self-diffusion. J Phys Chem C. 2018;122:19613–19624.
  • Krishnan NMA, Wang B, Sant G, et al. Revealing the effect of irradiation on cement hydrates: evidence of a topological self-organization. ACS Appl Mater Interfaces. 2017;9:32377–32385.
  • Soria FA, Zhang W, van Duin ACT, et al. Thermal stability of organic monolayers grafted to Si(111): insights from ReaxFF reactive molecular dynamics simulations. ACS Appl Mater Interfaces. 2017;9:30969–30981.
  • Soria FA, Zhang W, Paredes-Olivera PA, et al. Si/C/H ReaxFF reactive potential for silicon surfaces grafted with organic molecules. J Phys Chem C. 2018;122:23515–23527.
  • https://www.scm.com. (2017)
  • Münzer A, Sellmann J, Fortugno P, et al. Inline coating of silicon nanoparticles in a plasma reactor: reactor design, simulation and experiment. Mater Today Proc. 2017;4:S118–S127.
  • Harry JE. Introduction to Plasma Technology. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2010.
  • Mangolini L. Synthesis, properties, and applications of silicon nanocrystals, J. Vac. Sci. Technol. B. Nanotechnol Microelectron Mater Process Meas Phenom. 2013;31:020801.
  • Priolo F, Gregorkiewicz T, Galli M, et al. Silicon nanostructures for photonics and photovoltaics. Nat Nanotechnol. 2014;9:19–32.
  • Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J Phys Condens Matter. 2009;21:395502
  • Rossi G, Ferrando R. Searching for low-energy structures of nanoparticles: a comparison of different methods and algorithms. J Phys Condens Matter. 2009;21:084208.
  • Barcaro G, Fortunelli A. A magic Pd−Ag binary cluster on the F s -defected MgO(100) surface. J Phys Chem C. 2007;111:11384–11389.
  • Barcaro G, Monti S, Sementa L, et al. Atomistic modelling of Si nanoparticles synthesis. Crystals. 2017;7:54.
  • Barcaro G, Monti S, Sementa L, et al. Parametrization of a reactive force field (ReaxFF) for molecular dynamics simulations of Si nanoparticles. J Chem Theory Comput. 2017;13:3854–3861.
  • van Duin ACT, Baas JMA, van de Graaf B. Delft molecular mechanics: a new approach to hydrocarbon force fields. Inclusion of a geometry-dependent charge calculation. J Chem Soc Faraday Trans. 1994;90:2881.
  • Iype E, Hütter M, Jansen APJ, et al. Parameterization of a reactive force field using a Monte Carlo algorithm. J Comput Chem. 2013;34:1143–1154.
  • ADF2017, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. Available from: http://www.scm.com. 2017
  • A. C. T. Van Duin, ReaxFF User Manual. ReaxFF User Man., 2002, 1–39.
  • LAMMPS Molecular Dynamics Simulator. [accessed on 2017 Feb 12]. Available online: http://lammps.sandia.gov, http://lammps.sandia.gov.
  • Barcaro G, Monti S, Sementa L, et al. Modelling nucleation and growth of ZnO nanoparticles in a low temperature plasma by reactive dynamics. J Chem Theory Comput. 2019;153:2010–2021
  • Karthika S, Radhakrishnan TK, Kalaichelvi P. A review of classical and nonclassical nucleation theories. Cryst Growth Des. 2016;16:6663–6681.
  • Zachariah MR, Carrier MJ. Gas-phase nanoparticle sintering : a comparison with phenomenological models. J. Aerosol. Sci.1999;30:1139–1151.
  • Di Nunzio PE, Martelli S. Coagulation and aggregation model of silicon nanoparticles from laser pyrolysis. Aerosol Sci Technol. 2006;40:724–734.
  • Sementa L, Barcaro G, Monti S, et al. Molecular dynamics simulations of melting and sintering of Si nanoparticles: a comparison of different force fields and computational models. Phys Chem Chem Phys. 2018;20:1707–1715.
  • Baletto F, Ferrando R. Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys. 2005;77:371–423.
  • Chau J, Yang -C-C, Shih -H-H, et al. Microwave plasma production of metal nanopowders. Inorganics. 2014;2:278–290.
  • Zhou T, Liu L, Goddard WA III, et al. ReaxFF reactive molecular dynamics on silicon pentaerythritol tetranitrate crystal validates the mechanism for the colossal sensitivity. Phys Chem Chem Phys. 2014;16:23779–23791.
  • Barducci A, Bonomi M, Parrinello M. Metadynamics. Wiley Interdiscip Rev Comput Mol Sci. 2011;1:826–843.
  • Sutto L, Marsili S, Gervasio FL. New advances in metadynamics. Wiley Interdiscip Rev Comput Mol Sci. 2012;2:771–779.