1,797
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

High-speed on-chip light sources at the nanoscale

& ORCID Icon
Article: 1658541 | Received 07 Nov 2018, Accepted 15 Aug 2019, Published online: 12 Sep 2019

References

  • Cisco. Cisco global cloud index : forecast and methodology, 2016–2021. Cisco. 2018.
  • Miller DAB. Rationale and challenges for optical interconnects to electronic chips. Proc IEEE. 2000;88:761–779.
  • Sun C, Wade MT, Lee Y, et al. Single-chip microprocessor that communicates directly using light. Nature. 2015.
  • Goodman JW, Leonberger FI, Kung SY, et al. Optical interconnections for VLSI systems. Proc IEEE. 1984;72:850–866.
  • Astfalk G. Why optical data communications and why now? Appl Phys A. 2009;95:933–940.
  • Coldren LA, Corzine SW. Diode Lasers and Photonic Integrated Circuits. John Wiley and Sons, Hoboken, NJ. 2012.
  • Li N, Han K, Sorger V, et al. Nanoscale light sources for optical interconnects. J Lasers Opt Photonics. 2017;04:3–5.
  • Dolores-Calzadilla V, Romeira B, Pagliano F, et al. Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon. Nat Commun. 2017;8:1–8.
  • Wheeler HA. Fundamental limitations of small antennas. Proc IRE. 1947;35:1479–1484.147148
  • Eggleston MS, Messer K, Zhang L, et al. Optical antenna enhanced spontaneous emission. Proc Natl Acad Sci. 2015.
  • Purcell EM. Spontaneous Emission Probabliities at Radio Frquencies. Phys Rev. 1946;69:674.
  • Lau EK, Lakhani A, Tucker RS, et al. Enhanced modulation bandwidth of nanocavity light emitting devices. Opt Express. 2009;17:7790.
  • Tucker RS. High-speed modulation of semiconductor lasers. J Light Technol. 1985;3:1180–1192.
  • Zhu NH, Shi Z, Zhang ZK, et al. Directly modulated semiconductor lasers. IEEE J Sel Top Quantum Electron. 2018.
  • Ning C-Z. Semiconductor nanolasers and the size-energy-efficiency challenge: a review. Adv Photonics. 2019;1:014002.
  • Baba T, Fujita M, Sakai A, et al. Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10 µm. IEEE Photonics Technol Lett. 1997;9:878–880.
  • Seo MK, Jeong KY, Yang JK, et al. Low threshold current single-cell hexapole mode photonic crystal laser. Appl Phys Lett. 2007;90.
  • Oulton RF, Sorger VJ, Zentgraf T, et al. Plasmon lasers at deep subwavelength scale. Nature. 2009.
  • Noginov MA, Zhu G, Belgrave AM, et al. Demonstration of a spaser-based nanolaser. Nature. 2009.
  • Hill MT, Gather MC. Advances in small lasers. Nat Photonics. 2014.
  • Hayenga WE, Garcia-Gracia H, Hodaei H, et al. Metallic coaxial nanolasers, Adv Phys X. 2016;1:262–275.
  • Ni C-YA, Chuang SL. Theory of high-speed nanolasers and nanoLEDs. Opt Express. 2012;20:16450.
  • Fortuna SA, Taghizadeh A, Yablonovitch E, et al., “Toward 100 GHz direct modulation rate of antenna coupled nanoLED,” In 2016 IEEE Photonics Conference, IPC 2016, Waikoloa, HI. IEEE; 2017. pp. 216–217.
  • Li X, Gu Q. Ultrafast shifted-core coaxial nano-emitter. Opt Express. 2018;26:15177–15185.
  • Fiore A, Chen JX, Ilegems M. Scaling quantum-dot light-emitting diodes to submicrometer sizes. Appl Phys Lett. 2002;81:1756–1758.
  • Shambat G, Ellis B, Majumdar A, et al. Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode. Nat Commun. 2011;2:4–5.
  • Huang KCY, Seo MK, Sarmiento T, et al. Electrically driven subwavelength optical nanocircuits. Nat Photonics. 2014;8:244–249.
  • Vesseur EJR, De Abajo FJG, Polman A. Broadband Purcell enhancement in plasmonic ring cavities. Phys Rev B - Condens Matter Mater Phys. 2010.
  • Kuttge M, García De Abajo FJ, Polman A. Ultrasmall mode volume plasmonic nanodisk resonators. Nano Lett. 2010.
  • Kinkhabwala A, Yu Z, Fan S, et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat Photonics. 2009;3:654–657.
  • Arbel D, Berkovitch N, Nevet A, et al. Light emission rate enhancement from InP MQW by plasmon nano-antenna arrays. Opt Express. 2011;19:9807.
  • Agrawal GP, Dutta NK. Semiconductor lasers. Springer US, Boston, MA; 1993.
  • Ma RM, Oulton RF. Applications of nanolasers. Nat Nanotechnol. 2019.
  • Hall RN. Coherent light emission from p-n junctions. Solid State Electron. 1963;6:405–408.
  • Holonyak N, Bevacqua SF. Coherent (visible) light emission from Ga(As1-xPx) junctions. Appl Phys Lett. 1962.
  • Casey HC, Stern F. Concentration-dependent absorption and spontaneous emission of heavily doped GaAs. J Appl Phys. 1976;47:631–643.
  • Ieee J, Electronics Q. Power and modulation bandwidth of GaAs-AIGaAs high-radiance LED‘s. Quantum. 1978;14:150–159.
  • Feng M, Holonyak N, Hafez W. Light-emitting transistor: light emission from InGaP/GaAs heterojunction bipolar transistors. Appl Phys Lett. 2004;84:151–153.
  • Walter G, Wu CH, Then HW, et al. Tilted-charge high speed (7 GHz) light emitting diode. Appl Phys Lett. 2009;94:1–4.
  • Miura R, Imamura S, Ohta R, et al. Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters. Nat Commun. 2014.
  • Khajavikhan M, Simic A, Katz M, et al. Thresholdless nanoscale coaxial lasers. Nature. 2012;482:204–207.
  • Maksymov IS, Besbes M, Hugonin JP, et al. Metal-coated nanocylinder cavity for broadband nonclassical light emission. Phys Rev Lett. 2010.
  • Roelkens G, Karouta F, van der Tol J, et al. Photonic integration in indium-phosphide membranes on silicon. IET Optoelectron. 2011;5:218–225.
  • Peucheret C. Direct and external modulation of light. Direct. 2006.
  • Debnath K, Welna K, Ferrera M, et al. Highly efficient optical filter based on vertically coupled photonic crystal cavity and bus waveguide. Opt Lett. 2013.
  • Ma RM, Oulton RF, Sorger VJ, et al. Plasmon lasers: coherent light source at molecular scales. Laser Photonics Rev. 2013;7:1–21.
  • Kai T, Mei-yu W, Fu-cheng W, et al. The two-dimensional hybrid surface plasma micro-cavity. J Mod Opt. 2018;65:1595–1600.
  • Ding K, Diaz JO, Bimberg D, et al. Modulation bandwidth and energy efficiency of metallic cavity semiconductor nanolasers with inclusion of noise effects. Laser Photonics Rev. 2015;9:488–497.
  • Tucker RS, Wiesenfeld JM, Downey PM, et al. Propagation delays and transition times in pulse-modulated semiconductor lasers. Appl Phys Lett. 1986;48:1707–1709.
  • Takeda K, Sato T, Shinya A, et al. Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers. Nat Photonics. 2013;7:569–575.
  • Yang Y-D, Zhang Y, Huang Y-Z, et al. Direct-modulated waveguide-coupled microspiral disk lasers with spatially selective injection for on-chip optical interconnects. Opt Express. 2014;22:824.
  • Agrawal GP. Fiber-optic communication systems, 4th ed. John Wiley and Sons, New York, NY. 2011. p. 1–600.
  • Romeira B, Fiore A. Physical limits of nanoLEDs and nanolasers for optical communications. Proc IEEE. 2019;1–14.