3,020
Views
7
CrossRef citations to date
0
Altmetric
REVIEW ARTICLES

High brightness ultrafast transmission electron microscope based on a laser-driven cold-field emission source: principle and applications

, , , &
Article: 1660214 | Received 09 Apr 2019, Accepted 05 Aug 2019, Published online: 12 Sep 2019

References

  • Williams DB, Carter CB. The transmission electron microscope. In: Transmission electron microscopy: a textbook for materials science. Boston, MA: Springer US; 1996. p. 812–838.
  • Haider M, Uhlemann S, Schwan E, et al. Electron microscopy image enhanced. Nature. 1998 April;392(6678):768–769.
  • Krivanek OL, Chisholm MF, Nicolosi V, et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature. 2010 March;464(7288):571–574.
  • Krivanek OL, Lovejoy TC, Dellby N, et al. Vibrational spectroscopy in the electron microscope. Nature. 2014 October;514(7521):209–212.
  • Dömer H, Bostanjoglo O. High-speed transmission electron microscope. Rev Sci Instrum. 2003 September;74(10):4369–4372.
  • King WE, Armstrong MR, Bostanjoglo O, et al. High-Speed Electron Microscopy. In: Hawkes PW,. Spence JCH, editors. Science of Microscopy. New York, NY: Springer; 2007. p. 406–444.
  • Zewail AH, Thomas JM. 4d electron microscopy: imaging in space and time. UK: Imperial College Press; 2009.
  • Zewail AH. Four-dimensional electron microscopy. Science. 2010;328(5975):187–193.
  • Flannigan DJ, Zewail AH. 4d electron microscopy: principles and applications. Acc Chem Res. 2012;45(10):1828–1839.
  • Vanacore GM, Fitzpatrick AWP, Zewail AH. Four-dimensional electron microscopy: Ultrafast imaging, diffraction and spectroscopy in materials science and biology. Nano Today. 2016;11(2):228–249.
  • Arbouet A, Caruso GM, Houdellier F. Chapter one - ultrafast transmission electron microscopy: historical development, instrumentation, and applications. In: Hawkes PW, editor. Advances in imaging and electron physics. Vol. 207.Elsevier; January 2018. p. 1–72. https://www.sciencedirect.com/science/article/pii/S1076567018300223.
  • Lobastov VA, Srinivasan R, Zewail AH. Four-dimensional ultrafast electron microscopy. Proc Natl Acad Sci U S A. 2005 May;102(20):7069–7073.
  • Piazza L, Masiel DJ, LaGrange T, et al. Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology. Chem Phys. 2013;423:79–84.
  • Cao G, Sun S, Zhongwen L, et al. Clocking the anisotropic lattice dynamics of multi-walled carbon nanotubes by four-dimensional ultrafast transmission electron microscopy. Sci Rep. 2015;5:8404.
  • Bücker K, Picher M, Crégut O, et al. Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode. Ultramicroscopy. 2016;171:8–18.
  • Gahlmann A, Park ST, Zewail AH. Ultrashort electron pulses for diffraction, crystallography and microscopy: theoretical and experimental resolutions. Phys Chem Chem Phys. 2008;10(20):2894–2909.
  • Feist A, Echternkamp KE, Schauss J, et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature. 2015 May;521(7551):200–203.
  • Echternkamp KE, Feist A, Schafer S, et al. Ramsey-type phase control of free-electron beams. Nat Phys. 2016 November;12(11):1000–1004.
  • Priebe KE, Rathje C, Yalunin SV, et al. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy. Nat Photonics. 2017 December;11(12):793–797.
  • Vanacore GM, Madan I, Berruto G, et al. Attosecond coherent control of free-electron wave functions using semi-infinite light fields. Nat Commun. 2018 July;9(1):2694.
  • Morimoto Y, Baum P. Diffraction and microscopy with attosecond electron pulse trains. Nat Phys. 2018;14(3):252–256.
  • Hommelhoff P, Kealhofer C, Kasevich MA. Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses. Phys Rev Lett. 2006 December;97(24):247402.
  • Hommelhoff P, Sortais Y, Aghajani-Talesh A, et al. Field emission tip as a nanometer source of free electron femtosecond pulses. Phys Rev Lett. 2006 February;96(7):077401.
  • Ropers C, Elsaesser T, Cerullo G, et al. Ultrafast optical excitations of metallic nanostructures: from light confinement to a novel electron source. New J Phys. 2007;9(10):397.
  • Ropers C, Solli DR, Schulz CP, et al. Localized multiphoton emission of femtosecond electron pulses from metal nanotips. Phys Rev Lett. 2007;98(4):043907.
  • Paarmann A, Gulde M, Muller M, et al. Coherent femtosecond low-energy single-electron pulses for time-resolved diffraction and imaging: A numerical study. J Appl Phys. 2012 December;112(11):113109–113110.
  • Ehberger D, Hammer J, Eisele M, et al. Highly coherent electron beam from a laser-triggered tungsten needle tip. Phys Rev Lett. 2015 Jun;114:227601.
  • Cook B, Kruit P. Coulomb interactions in sharp tip pulsed photo field emitters. Appl Phys Lett. 2016;109(15):151901.
  • Bach N, Domröse T, Feist A, et al. Coulomb interactions in high-coherence femtosecond electron pulses from tip emitters. Struct Dyn.2019 January;6(1):014301.
  • Hoffrogge J, Stein JP, Krüger M, et al. Tip-based source of femtosecond electron pulses at 30 kev. J Appl Phys. 2014 March;115(9):094506.
  • Bormann R, Strauch S, Schäfer S, et al. An ultrafast electron microscope gun driven by two-photon photoemission from a nanotip cathode. J Appl Phys. 2015;118(17).
  • Yang D-S, Mohammed OF, Zewail AH. Scanning ultrafast electron microscopy. Proc Nat Acad Sci. 2010;107(34):14993–14998.
  • Feist A, Bach N, Da Silva NR, et al. Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam. Ultramicroscopy. 2017;176(SupplementC):63–73.
  • Caruso GM, Houdellier F, Abeilhou P, et al. Development of an ultrafast electron source based on a cold-field emission gun for ultrafast coherent tem. Appl Phys Lett. 2017 July;111(2):023101.
  • Houdellier F, Caruso GM, Weber S, et al. Development of a high brightness ultrafast transmission electron microscope based on a laser-driven cold field emission source. Ultramicroscopy. 2018 March;186:128–138.
  • Das P, Blazit JD, Tencé M, et al. Stimulated electron energy loss and gain in an electron microscope without a pulsed electron gun. Ultramicroscopy. 2019 August; 203:44-51. https://www.sciencedirect.com/science/article/pii/S0304399118303176
  • Wu L, Ang LK. Nonequilibrium model of ultrafast laser-induced electron photofield emission from a dc-biased metallic surface. Phys Rev B. 2008 December;78(22):224112.
  • Yanagisawa H, Hafner C, Dona P, et al. Laser-induced field emission from a tungsten tip: optical control of emission sites and the emission process. Phys Rev B. 2010 March;81(11):115429.
  • Yanagisawa H, Hengsberger M, Leuenberger D, et al. Energy distribution curves of ultrafast laser-induced field emission and their implications for electron dynamics. Phys Rev Lett. 2011 August;107(8):087601.
  • Yanagisawa H, Schnepp S, Hafner C, et al. Delayed electron emission in strong-field driven tunnelling from a metallic nanotip in the multi-electron regime. Sci Rep. 2016 October;6:35877.
  • Del Fatti N, Voisin C, Achermann M, et al. Nonequilibrium electron dynamics in noble metals. Phys Rev B (Condens Matter). 61(24):16956–16966.
  • Fujimoto JG, Liu JM, Ippen EP, et al. Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures. Phys Rev Lett. 1984 November;53(19):1837–1840.
  • Wiecha PR. pyGDM A python toolkit for full-field electro-dynamical simulations and evolutionary optimization of nanostructures. Comput Phys Commun. 2018 December; 233(167–192). https://www.sciencedirect.com/science/article/pii/S001046551830225X
  • Del Fatti N, Arbouet A, Vallée F. Femtosecond optical investigation of electron-lattice interactions in an ensemble and a single metal nanoparticle. Appl Phys B. 2006 July;V84(1):175–181.
  • Quinonez E, Handali J, Barwick B. Femtosecond photoelectron point projection microscope. Rev Sci Instrum. 2013;84(10):103710.
  • García de Abajo FJ. Optical excitations in electron microscopy. Rev Mod Phys. 2010 February;82(1):209.
  • García de Abajo FJ, Kociak M. Electron energy-gain spectroscopy. New J Phys. 2008 July;10(7):073035.
  • Barwick B, Flannigan DJ, Zewail AH. Photon-induced near-field electron microscopy. Nature. 2009 December;462(7275):902–906.
  • Javier F, de Abajo G, Asenjo-Garcia A, et al. Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields. Nano Letters. May 2010;10(5):1859–1863.
  • Zewail AH, Park ST. Photon-induced near-field electron microscopy (PINEM): theoretical and experimental. New J Phys. 2010;12(12):123028.
  • Yurtsever A, van der Veen RM, Zewail AH. Subparticle ultrafast spectrum imaging in 4d electron microscopy. Science. 2012 January;335(6064):59–64.
  • Pomarico E, Madan I, Berruto G, et al. meV resolution in laser-assisted energy-filtered transmission electron microscopy. arXiv:1710.01183 [cond-mat]. October 2017.
  • Park ST, Kwon O-H, Zewail AH. Chirped imaging pulses in four-dimensional electron microscopy: femtosecond pulsed hole burning. New J Phys. 2012;14(5):053046.
  • Piazza L, Lummen TTA, Quiñonez E, et al. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field. Nat Commun. 2015 March;6:6407.
  • Barwick B, Zewail AH. Photonics and plasmonics in 4d ultrafast electron microscopy. ACS Photonics. 2015 October;2(10):1391–1402.
  • Bosman M, Ye E, Tan SF, et al. Surface plasmon damping quantified with an electron nanoprobe. Sci Rep. 2013 February;3.
  • Mazzucco S, Geuquet N, Ye J, et al. Ultralocal modification of surface plasmons properties in silver nanocubes. Nano Lett. 2012 February;123:1288–1294.
  • Sophie Meuret LH, Tizei G, Auzelle T, et al. Lifetime measurements well below the optical diffraction limit. ACS Photonics. 2016 July;3(7):1157–1163.
  • Gabor D. A New Microscopic Principle. Nature. 1948 May;161:777–778.
  • Dunin-Borkowski RE, Kasama T, Harrison RJ Chapter 5 electron holography of nanostructured materials. In: Angus IK, Sarah JH, editors. Nanocharacterisation (2). The Royal Society of Chemistry; 2015. p. 158–210.
  • Hÿtch M, Houdellier F, Hue F, et al. Nanoscale holographic interferometry for strain measurements in electronic devices. Nature. 2008 June;453(7198):1086–1089.
  • Houdellier F, Caruso GM, Weber S, et al. Optimization of off-axis electron holography performed with femtosecond electron pulses. Ultramicroscopy. 2019 July;202:26–32.
  • Voelkl E, Tang D. Approaching routine 2/1000 phase resolution for off-axis type holography. Hannes Lichte 65th Birthday. Ultramicroscopy. 2010 April;110(5):447–459.
  • McLeod RA, Bergen M, Malac M. Phase measurement error in summation of electron holography series. Ultramicroscopy. 2014;141:38–50.
  • Niermann T, Lehmann M. Averaging scheme for atomic resolution off-axis electron holograms. Micron. 2014 August;63:28–34.
  • Völkl E, Allard LF, Joy DC. Introduction to electron holography. In: Völkl E, Allard L, Joy D, editors.  New York: Plenum Publishers. 1999.
  • Nelet A, Crut A, Arbouet A, et al. Acoustic vibrations of metal nanoparticles: high order radial mode detection. EMRS 2003 Symposium F. Nanostruct Cluster.2004 March;226(1–3):209–215.
  • Morniroli JP. Large-angle convergent-beam electron diffraction applications to crystal defects. In: Paris: Société Française de Microscopie. 2002.
  • Morniroli JP. CBED and LACBED characterization of crystal defects. J Microsc. 2006;223(3):240–245.
  • Zuo JM, Kim M, O’Keeffe M, et al. Direct observation of d-orbital holes and Cu-Cu bonding in Cu2o. Nature. 1999 September;401(6748):49–52.
  • Yurtsever A, Zewail AH. Kikuchi ultrafast nanodiffraction in four-dimensional electron microscopy. Proc Nat Acad Sci. 2011;108(8):3152–3156.
  • Liang W, Vanacore GM, Zewail AH. Observing (non)linear lattice dynamics in graphite by ultrafast Kikuchi diffraction. Proc Nat Acad Sci. 2014;111(15):5491–5496.
  • Feist A, Da Silva NR, Liang W, et al. Nanoscale diffractive probing of strain dynamics in ultrafast transmission electron microscopy. Struct Dyn.2018 January;5(1):014302.