2,022
Views
15
CrossRef citations to date
0
Altmetric
Review Articles

Optical spatial shock waves in nonlocal nonlinear media

, , , , &
Article: 1662733 | Received 28 May 2019, Accepted 27 Aug 2019, Published online: 16 Oct 2019

References

  • Gurevich AV, Pitaevskii LP. Nonstationary structure of a collisionless shock wave. Sov Phys JETP. 1974;38:933.
  • Whitham GB. Linear and nonlinear waves. New York: Wiley; 1999.
  • El GA. Resolution of a shock in hyperbolic systems modified by weak dispersion. Chaos. 2005;15:037103.
  • Barsi C, Wan W, Sun C, et al. Dispersive shock waves with nonlocal nonlinearity. Opt Lett. 2007;32:2930.
  • Hoefer MA, Ablowitz MJ. Interactions of dispersive shock waves. Physica D. 2007;236:44.
  • Hoefer MA, Ablowitz MJ, Engels P. Piston dispersive shock wave problem. Phys Rev Lett. 2008;100:084504.
  • Crosta M, Trillo S, Fratalocchi A. The Whitham approach to dispersive shocks in systems with cubic-quintic nonlinearities. New J Phys. 2012;14:093019.
  • Conforti M, Baronio F, Trillo S. Resonant radiation shed by dispersive shock waves. Phys Rev A. 2014;89:013807.
  • Moro A, Trillo S. Mechanism of wave breaking from a vacuum point in the defocusing nonlinear Schrödinger equation. Phys Rev E. 2014;89:023202.
  • El GA, Hoefer MA. Dispersive shock waves and modulation theory. Physica D. 2016;333:11.
  • El GA, Smyth NF. Radiating dispersive shock waves in non-local optical media. Proc R Soc A. 2016;472:20150633.
  • Marcucci G, Braidotti MC, Gentilini S, et al. Time asymmetric quantum mechanics and shock waves: exploring the irreversibility in nonlinear optics. Ann Phys. 2017;529:1600349.
  • Peregrine DH. Calculations of the development of an undular bore. J Fluid Mech. 1966;25:321.
  • Taylor RJ, Baker DR, Ikezi H. Observation of collisionless electrostatic shocks. Phys Rev Lett. 1970;24:206.
  • Smyth NF, Holloway PE. Hydraulic jump and undular bore formation on a shelf break. J Phys Ocean. 1988;18:947.
  • Rothenberg JE, Grischkowsky D. Observation of the formation of an optical intensity shock and wave breaking in the nonlinear propagation of pulses in optical fibers. Phys Rev Lett. 1989;62:531.
  • Wetzel B, Bongiovanni D, Kues M, et al. Experimental generation of Riemann waves in optics: a route to shock wave control. Phys Rev Lett. 2016;117:073902.
  • Damski B. Formation of shock waves in a Bose-Einstein condensate. Phys Rev A. 2004;69:043610.
  • Kamchatnov AM, Gammal A, Kraenkel RA. Dissipationless shock waves in Bose-Einstein condensates with repulsive interaction between atoms. Phys Rev A. 2004;69:063605.
  • Pérez-Garca VM, Konotop VV, Brazhnyi VA. Feshbach resonance induced shock waves in Bose-Einstein condensates. Phys Rev Lett. 2004;92:220403.
  • Simula TP, Engels P, Coddington I, et al. Observations on sound propagation in rapidly rotating Bose-Einstein condensates. Phys Rev Lett. 2005;94:080404.
  • Hoefer MA, Ablowitz MJ, Coddington I, et al. On dispersive and classical shock waves in Bose-Einstein condensates and gas dynamics. Phys Rev A. 2006;74:023623.
  • Chang JJ, Engels P, Hoefer MA. Formation of dispersive shock waves by merging and splitting Bose-Einstein condensates. Phys Rev Lett. 2008;101:170404.
  • Bettelheim E, Abanov AG, Wiegmann P. Nonlinear quantum shock waves in fractional quantum Hall edge states. Phys Rev Lett. 2006;97:246401.
  • El GA, Gammal A, Khamis EG, et al. Theory of optical dispersive shock waves in photorefractive media. Phys Rev A. 2007;76:053813.
  • Romagnani L, Bulanov SV, Borghesi M, et al. Observation of collisionless shocks in laser-plasma experiments. Phys Rev Lett. 2008;101:025004.
  • Maiden MD, Lowman NK, Anderson DV, et al. Observation of dispersive shock waves, solitons, and their interactions in viscous fluid conduits. Phys Rev Lett. 2016;116:174501.
  • Akhmanov SA, Krindach DP, Sukhorukov AP, et al. Nonlinear defocusing of laser beams. Sov J Exp Theor Phys Lett. 1967;6:38.
  • Ghofraniha N, Conti C, Ruocco G, et al. Shocks in nonlocal media. Phys Rev Lett. 2007;99:043903.
  • Wan W, Jia S, Fleischer JW. Dispersive superfluid-like shock waves in nonlinear optics. Nat Phys. 2007;3:46.
  • Conti C, Fratalocchi A, Peccianti M, et al. Observation of a gradient catastrophe generating solitons. Phys Rev Lett. 2009;102:083902.
  • Ghofraniha N, Gentilini S, Folli V, et al. Shock waves in disordered media. Phys Rev Lett. 2012;109:243902.
  • Garnier J, Xu G, Trillo S, et al. Incoherent dispersive shocks in the spectral evolution of random waves. Phys Rev Lett. 2013;111:113902.
  • Gentilini S, Ghofraniha N, DelRe E, et al. Shock waves in thermal lensing. Phys Rev A. 2013;87:053811.
  • Gentilini S, Ghajeri F, Ghofraniha N, et al. Optical shock waves in silica aerogel. Opt Express. 2014;22:1667.
  • Smith V, Cala P, Man W, et al. Dark soliton attraction and optical spatial shock waves observed in m-cresol/nylon solutions. In: CLEO: 2014. Optical Society of America; 2014. p. FW3D.1. Washington, D.C. (USA): OSA Publishing.
  • Gentilini S, Braidotti MC, Marcucci G, et al. Nonlinear Gamow vectors, shock waves, and irreversibility in optically nonlocal media. Phys Rev A. 2015;92:023801.
  • Gentilini S, Braidotti MC, Marcucci G, et al. Physical realization of the Glauber quantum oscillator. Sci Rep. 2015;5:15816.
  • Xu G, Vocke D, Faccio D, et al. From coherent shocklets to giant collective incoherent shock waves in nonlocal turbulent flows. Nat Commun. 2015;6:8131.
  • Braidotti MC, Gentilini S, Conti C. Gamow vectors explain the shock profile. Opt Express. 2016;24:21963.
  • Xu G, Garnier J, Faccio D, et al. Incoherent shock waves in long-range optical turbulence. Physica D. 2016;333:310.
  • Zannotti A, Rüschenbaum M, Denz C. Pearcey solitons in curved nonlinear photonic caustic lattices. J Opt. 2017;19:094001.
  • Gautam R, Xiang Y, Lamstein J, et al. Optical force-induced nonlinearity and self-guiding of light in human red blood cell suspensions. Light: Sc Appl. 2019;8:31.
  • Gardner CS, Greene JM, Kruskal MD, et al. Method for solving the Korteweg-deVries equation. Phys Rev Lett. 1967;19:1095.
  • Fibich G. The nonlinear Schrödinger equation. Switzerland: Springer International Publishing; 2015.
  • Carter CA, Harris JM. Comparison of models describing the thermal lens effect. Appl Opt. 1984;23:476.
  • Bang O, Krolikowski W, Wyller J, et al. Collapse arrest and soliton stabilization in nonlocal nonlinear media. Phys Rev E. 2002;66:046619.
  • Peccianti M, Brzdakiewicz KA, Assanto G. Nonlocal spatial soliton interactions in nematic liquid crystals. Opt Lett. 2002;27:1460.
  • Conti C, Peccianti M, Assanto G. Observation of optical spatial solitons in a highly nonlocal medium. Phys Rev Lett. 2004;92:113902.
  • Guo Q, Luo B, Yi F, et al. Large phase shift of nonlocal optical spatial solitons. Phys Rev E. 2004;69:016602.
  • Rotschild C, Cohen O, Manela O, et al. Solitons in nonlinear media with an infinite range of nonlocality: first observation of coherent elliptic solitons and of vortex-ring solitons. Phys Rev Lett. 2005;95:213904.
  • Yakimenko AI, Zaliznyak YA, Kivshar Y. Stable vortex solitons in nonlocal self-focusing nonlinear media. Phys Rev E. 2005;71:065603.
  • Minovich A, Neshev DN, Dreischuh A, et al. Experimental reconstruction of nonlocal response of thermal nonlinear optical media. Opt Lett. 2007;32:1599.
  • Folli V, Conti C. Frustrated Brownian motion of nonlocal solitary waves. Phys Rev Lett. 2010;104:193901.
  • Folli V, Conti C. Anderson localization in nonlocal nonlinear media. Opt Lett. 2012;37:332.
  • Maucher F, Krolikowski W, Skupin S. Stability of solitary waves in random nonlocal nonlinear media. Phys Rev A. 2012;85:063803.
  • Folli V, Conti C. Random walk of solitary and shock waves in nonlocal disordered media. New J Phys. 2013;15:085026.
  • Smith V, Leung B, Cala P, et al. Giant tunable self-defocusing nonlinearity and dark soliton attraction observed in M-Cresol/Nylon thermal solutions. Opt Mater Express. 2014;4:1807.
  • Alberucci A, Jisha CP, Smyth NF, et al. Spatial optical solitons in highly nonlocal media. Phys Rev A. 2015;91:013841.
  • Alberucci A, Jisha CP, Assanto G. Breather solitons in highly nonlocal media. J Opt. 2016;18:125501.
  • Horikis TP, Frantzeskakis DJ. Light meets water in nonlocal media: surface tension analogue in optics. Phys Rev Lett. 2017;118:243903.
  • Horikis TP, Frantzeskakis DJ. Patterns of water in light. Proc R Soc A. 2019;475:20190110.
  • Bohm A. Resonance poles and Gamow vectors in the rigged Hilbert space formulation of quantum mechanics. J Math Phys. 1981;22:2813.
  • Bohm A, Gadella M, Mainland GB. Gamow vectors and decaying states. Am J Phys. 1989;57:1103.
  • Bollini CG, Civitarese O, De Paoli AL, et al. Gamow states as continuous linear functionals over analytical test functions. J Math Phys. 1996;37:4235.
  • Castagnino M, Diener R, Lara L, et al. Rigged Hilbert spaces and time-asymmetry: the case of the upside-down simple harmonic oscillator. Int Jour Theo Phys. 1997;36:2349.
  • Bohm A, Harshman NL. Quantum theory in the rigged Hilbert spaces - irreversibility from causality. Lect N Phys. 1998;504:179.
  • Bohm A. Time asymmetric quantum physics. Phys Rev. 1999;A60:861.
  • de la Madrid R, Gadella M. A pedestrian introduction to Gamow vectors. Am J Phys. 2002;70:626.
  • Chruściński D. Quantum mechanics of damped systems. J Math Phys. 2003;44:3718.
  • Chruściński D. Quantum mechanics of damped systems 2. J Math Phys. 2004;45:841.
  • Civitarese O, Gadella M. Physical and mathematical aspects of Gamow states. Phys Rep. 2004;396:41.
  • Marcucci G, Conti C. Irreversible evolution of a wave packet in the rigged-Hilbert-space quantum mechanics. Phys Rev A. 2016;94:052136.
  • Picozzi A. Towards a nonequilibrium thermodynamic description of incoherent nonlinear optics. Opt Express. 2007;15:9063.
  • Can S, Shu J, Barsi C, et al. Observation of the kinetic condensation of classical waves. Nat Phys. 2012;8:470.
  • Picozzi A, Garnier J, Hansson T, et al. Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics. Phys Rep. 2014;542:1.
  • Fusaro A, Garnier J, Xu G, et al. Emergence of long-range phase coherence in nonlocal fluids of light. Phys Rev A. 2017;95:063818.
  • Boyd RW. Nonlinear optics. 3rd ed. Cambridge (Massachusetts, USA): Academic Press; 2008.
  • Wetterer CJ, Schelonka LP, Kramer MA. Correction of thermal blooming by optical phase conjugation. Opt Lett. 1989;14:874.
  • Brochard P, Grolier-Mazza V, Cabanel R. Thermal nonlinear refraction in dye solutions: a study of the transient regime. J Opt Soc Am B. 1997;14:405.
  • Kemble EC. A contribution to the theory of the B.W.K. method. Phys Rev. 1935;48:549.
  • Snyder AW, Mitchell DJ. Accessible solitons. Science. 1997;276:1538.
  • Celeghini E, Gadella M, Del Olmo MA. Applications of rigged Hilbert spaces in quantum mechanics and signal processing. J Math Phys. 2016;57:072105.
  • Gamow G. Zur quantentheorie des atomkernes. Z Phys. 1928;51:204.
  • Gamow G. The quantum theory of nuclear disintegration. Nature. 1928;122:805.
  • Zakharov VE, L’von VS, Falkovich G. Kolmogorov spectra of turbulence I. Berlin Heidelberg: Springer-Verlag; 1992.
  • Newell AC, Nazarenko S, Biven L. Wave turbulence and intermittency. Physica D. 2001;152-153:520.
  • Nazarenko S. Wave turbulence. Berlin Heidelberg: Springer-Verlag; 2011.
  • Newell AC, Rumpf B. Wave turbulence. Ann Rev Fluid Mech. 2011;43:59.
  • Campa A, Dauxois T, Fanelli D, et al. Physics of long-range interacting systems. Oxford (UK): Oxford University Press; 2014.
  • Kartashov YV, Vysloukh VA, Torner L. Brownian soliton motion. Phys Rev A. 2008 May;77:051802.
  • Honeycutt RL. Stochastic Runge-Kutta algorithms. i. white noise. Phys Rev A. 1992;45:600.
  • Honeycutt RL. Stochastic Runge-Kutta algorithms. ii. colored noise. Phys Rev A. 1992;45:604.
  • Venkateswara Rao A, Wagh PB. Preparation and characterization of hydrophobic silica aerogels. Mat Chem Phys. 1998;53:13.
  • Latimer P. Light scattering and absorption as methods of studying cell population parameters. Ann Rev Biophys Bioeng. 1982;11:129.
  • Ashkin A, Dziedzic JM, Yamane T. Optical trapping and manipulation of single cells using infrared laser beams. Nature. 1987;330:769.
  • Bezryadina A, Hansson T, Gautam R, et al. Nonlinear self-action of light through biological suspensions. Phys Rev Lett. 2017;119:058101.
  • Dervaux J, Capellazzi Resta M, Brunet P. Light-controlled flows in active fluids. Nat Phys. 2017;13:306.
  • Conti C, Ruocco G, Trillo S. Optical spatial solitons in soft matter. Phys Rev Lett. 2005;95:183902.
  • El-Ganainy R, Christodoulides DN, Rotschild C, et al. Soliton dynamics and self-induced transparency in nonlinear nanosuspensions. Opt Expr. 2007;15:10207.
  • Greenfield E, Nemirovsky J, El-Ganainy R, et al. Shockwave based nonlinear optical manipulation in densely scattering opaque suspensions. Opt Expr. 2013;21:23785.
  • Man W, Fardad S, Zhang Z, et al. Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities. Phys Rev Lett. 2013;111:218302.
  • Steinke JM, Shepherd AP. Comparison of Mie theory and the light scattering of red blood cells. Appl Opt. 1988;27:4027.
  • Ghosh N, Buddhiwant P, Uppal A, et al. Simultaneous determination of size and refractive index of red blood cells by light scattering measurements. Appl Phys Lett. 2006;88:084101.
  • Miccio L, Memmolo P, Merola F, et al. Red blood cell as an adaptive optofluidic microlens. Nat Commun. 2015;6:6502.
  • Gautam R, Dluhy RA, Marques MB, et al. Characterization of storage-induced red blood cell hemolysis using raman spectroscopy. Lab Med. 2018;49:298.