4,256
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

The rise of flexible electronics in neuroscience, from materials selection to in vitro and in vivo applications

ORCID Icon, ORCID Icon & ORCID Icon
Article: 1664319 | Received 05 May 2019, Accepted 30 Aug 2019, Published online: 28 Sep 2019

References

  • Shulman RG. Brain imaging: what it can (and cannot) tell us about consciousness. Oxford : Oxford University Press; 2013.
  • Teplan M. Fundamentals of eeg measurement. Meas Sci Rev. 2002;2:869–903.
  • Dale AM, Liu AK, Fischl BR, et al. Neurotechnique-dynamic statistical parametric mapping: Combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron. 2000;26:55–68.
  • Fox PT, Burton H, Raichle ME. Mapping human somatosensory cortex with positron emission tomography. J Neurosurg. 1987;67:690–696.
  • Buzsáki G, Stark E, Berényi A, et al. Tools for probing local circuits : high-density silicon probes combined with optogenetics. Neuron. 2015;86:92–105.
  • Collinger JL, Wodlinger B, Downey JE, et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 2013;381:557–564.
  • Hochberg LR, Serruya MD, Friehs GM, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006;442:164–171.
  • Simeral JD, Kim SP, Black MJ, et al. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array. J Neural Eng. 2011;8(2):025027.
  • Vansteensel MJ, Pels EGM, Bleichner MG, et al. Fully implanted brain-computer interface in a locked-in patient with ALS. N Engl J Med. 2016;375:2060–2066.
  • Kim GH, Kim K, Lee E, et al. Recent progress on microelectrodes in neural interfaces. Materials. 2018;11:1995.
  • Adly N, Weidlich S, Seyock S, et al. Printed microelectrode arrays on soft materials : from PDMS to hydrogels. Npj Flex Electron. 2018;1–9. DOI:10.1038/s41528-018-0027-z.
  • Morin FO, Takamura Y, Tamiya E. Investigating neuronal activity with planar microelectrode arrays : achievements and new perspectives. J Biosci Bioeng. 2005;100:131–143.
  • Chen N, Tian L, Patil AC, et al. Neural interfaces engineered via micro- and nanostructured coatings. Nano Today. 2017;14:59–83.
  • Renz AF, Reichmuth AM, Stauffer F, et al. A guide towards long-term functional electrodes interfacing neuronal tissue. J Neural Eng. 2018;15:1–17.
  • Khodagholy D, Gelinas JN, Thesen T, et al. NeuroGrid: recording action potentials from the surface of the brain. Nat Neurosci. 2015;18:310–315.
  • Viventi J, Kim D-H, Vigeland L, et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci. 2011;14:1599–1605.
  • Mestre ALG, Inácio PMC, Elamine Y, et al. Extracellular electrophysiological measurements of cooperative signals in astrocytes populations. Front Neural Circuits. 2017;11:1–9.
  • Wong WS, Alberto S. Flexible electronics materials and applications. Cambridge : Springer 2009.
  • Brody TP. The thin film transistor-a late flowering bloom. IEEE Trans Electron Devices. 1984;31:1614–1628.
  • Nomura K, Ohta H, Takagi A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature. 2004;432:3383–3386.
  • Zeng W, Shu L, Li Q, et al. Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv Mater. 2014;26:5310–5336.
  • Irimia-Vladu M, Głowacki ED, Voss G, et al. Green and biodegradable electronics. Mater Today. 2012;15:340–346.
  • Ferrone A, Maita F, Maiolo L, et al. Wearable Band for Hand Gesture Recognition based on Strain Sensors. IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics; 2016. p. 4–7. doi:10.1109/BIOROB.2016.7523814
  • Stoppa M, Chiolerio A. Wearable electronics and smart textiles: A critical review. Sensors (Switzerland). 2014;14:11957–11992.
  • Pecora A, Maiolo L, Cuscunà M, et al. Low-temperature polysilicon thin film transistors on polyimide substrates for electronics on plastic. Solid State Electron. 2008;52:348–352.
  • Lu X, Xia Y. Electronic materials: buckling down for flexible electronics. Nat Nanotechnol. 2006;1:163–164.
  • Artukovic E, Kaempgen M, Hecht DS, et al. Transparent and flexible carbon nanotube transistors. Nano Lett. 2005;5:757–760.
  • Kim D, Song J, Choi WM, et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc Nat Acad Sci. 2008;105:1–6.
  • Ji B, Guo Z, Wang M, et al. Flexible polyimide-based hybrid opto-electric neural interface with 16 channels of micro-LEDs and electrodes. Microsyst Nanoeng. 2018;4.
  • Stieglitz T, Beutel H, Schuettler M, et al. Micromachined, polyimide-based devices for flexible neural interfaces. Biomed Microdevices. 2000;2:283–294.
  • Minev IR, Musienko P, Hirsch A, et al. Electronic dura mater for long-term multimodal neural interfaces. Science. 2015;347:159–164.
  • Jang K, Chung HU, Xu S, et al. Soft network composite materials with deterministic and bioinspired designs. Nat Commun. 2015;6:1–11.
  • Kaltenbrunner M, Sekitani T, Reeder J, et al. An ultra-lightweight design for imperceptible plastic electronics. Nature. 2013;499:458–463.
  • Lodato S, Arlotta P. Generating neuronal diversity in the mammalian cerebral cortex. Annu Rev Cell Dev Biol. 2015;31:699–720.
  • Mountcastle VB. Modality and topographic properties of single neurons of cat’s somatic sensory. J Neurophysiol. 1957;20:408–434.
  • Jones EG. Microcolumns in the cerebral cortex. PNAS. 2000;97:5019–5021.
  • Schevon CA, Ng SK, Cappell J, et al. Microphysiology of epileptiform activity in human neocortex. J Clin Neurophysiol. 2010;25:321–330.
  • Takmakov P, Ruda K, Scott Phillips K, et al. Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species. J Neural Eng. 2015;12:1–29.
  • Wolf PD, Reichert WM. Thermal considerations for the design of an implanted cortical brain–machine interface (BMI). Indwelling Neural Implant. Strateg. Contend. with the In Vivo Environ; Boca Raton (FL): CRC Press/Taylor & Francis; 2008. Chapter 3. 2008. p. 33–38.
  • IEEE SCC39. IEEE Std C95.1-2005 IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. IEEE Std C95.1-2005 (Revision of IEEE Std C95.1-1991); IEEE. 2005.
  • Lacour SP, Courtine G, Guck J. Materials and Technologies for soft implantable neuroprostheses. Nat Rev Mater. 2016;1.
  • Kim D, Viventi J, Amsden JJ, et al. Dissolvable films of silk fibroin for ultrathin, conformal bio-integrated electronics. Nat Mater. 2010;9:511–517.
  • Geddes LA, Hoff HE. The discovery of bioelectricity and current electricity the galvani-volta controversy. IEEE Spectr. 1971;8:38–46.
  • Golgi C. Sulla struttura della sostanza grigia del cervello. Gazz Medica Ital. 1873;6:244–246.
  • Ramón Y Cajal S. Textura del sistema nervioso del hombre y de los vertebrados : estudios sobre el plan estructural y composición histológica de los centros nerviosos adicionados de consideraciones fisiológicas fundadas en los nuevos descubrimientos. Madrid : N. Moya. 1894.
  • Waldeyer-Hartz W. Ueber einige neuere Forschungen im Gebiete der Anatomie des Centralnervensystems. Leipzig : G. Tieme,1891.
  • Hodgkin AL, Huxley F. Action potentials recorded from inside a nerve fibre. Nature. 1939;144:710–711.
  • Frank BK, Fuortes MGF. Potentials recorded from the spinal cord with microelectrodes. J Physiol. 1955;130:625–654.
  • Robinson DA. The electrical properties of metal microelectrodes. Proc IEEE. 1968;56:1065–1071.
  • Thomas CA, Springer PA, Loeb GE, et al. A Miniature Microelectrode Array To Monitor The Bioelectric Activity Of Cultured Cells. Exp Cell Res. 1972;74:61–66.
  • Pine J. Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J Neurosci Methods. 1980;2:19–31.
  • Gross GW. Simultaneous single unit recording in vitro with a photoetched laser deinsulated gold multimicroelectrode surface. IEEE Trans Biomed Eng. 1979;26:273–279.
  • Shamma-donoghue SA, May GA, Cotter NE, et al. Thin-film multielectrode arrays for a cochlear prosthesis. IEEE Transactions on Electron Devices 1982;29;136–144 .
  • Boppard SA, Wheeler BC, Wallace CS. A flexible perforated microelectrode array for extended neural recordings. IEEE Trans Biomed Eng. 1992;39:37–42.
  • Hazrati MK, Husin HM, Hofmann UG Wireless brain signal recordings based on capacitive electrodes. 2013 IEEE 8th international symposium on intelligent signal Processing. WISP 2013 – proceedings; 2013. p. 8–13. doi:10.1109/WISP.2013.6657474
  • Cogan SF, Plante TD, Ehrlich J Sputtered iridium oxide films (SIROFs) for low-impedance neural stimulation and recording electrodes. 26th annual international conference of the IEEE engineering in medicine and biology society; San Francisco CA 2005. Vol. 2, p. 4153–4156.
  • Aqrawe Z, Montgomery J, Travas-Sejdic J, et al. Conducting Polymers for neuronal microelectrode array recording and stimulation. Sens Actuators B Chem. 2018;257:753–765.
  • LeFloch F, Ho H-A, Harding-Lepage P, et al. Ferrocene‐functionalized cationic polythiophene for the label‐free electrochemical detection of DNA. Adv Mater. 2005;17:1251–1254.
  • Castagnola E, Maiolo L, Maggiolini E, et al. Pedot-cnt-coated low-impedance, ultra-flexible, and brain-conformable micro-ECoG arrays. IEEE Trans Neural Syst Rehabil Eng. 2015;23:342–350.
  • Castagnola V, Descamps E, Lecestre A, et al. Parylene-based flexible neural probes with PEDOT coated surface for brain stimulation and recording. Biosens Bioelectron. 2015;67:450–457.
  • Cui X, Hetke JF, Wiler JA, et al. Electrochemical deposition and characterization of conducting polymer polypyrrole/PSS on multichannel neural probes. Sens Actuators A Phys. 2001;93:8–18.
  • Marelli M, Divitini G, Collini C, et al. Flexible and biocompatible microelectrode arrays fabricated by supersonic cluster beam deposition on SU-8. J Micromech Microeng. 2011;21:045013.
  • Corbelli G, Ghisleri C, Marelli M, et al. Highly deformable nanostructured elastomeric electrodes with improving conductivity upon cyclical stretching. Adv Mater. 2011;23:4504–4508.
  • Chapman CAR, Chen H, Stamou M, et al. Nanoporous gold as a neural interface coating: effects of topography, surface chemistry, and feature size. ACS Appl Mater Interfaces. 2015;7:7093–7100.
  • Boehler C, Stieglitz T, Asplund M. Nanostructured platinum grass enables superior impedance reduction for neural microelectrodes. Biomaterials. 2015;67:346–353.
  • Kim KS, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009;457:706–710.
  • David-Pur M, Bareket-Keren L, Beit-Yaakov G, et al. All-carbon-nanotube flexible multi-electrode array for neuronal recording and stimulation. Biomed Microdevices. 2014;16:43–53.
  • Castagnola E, Ansaldo A, Maggiolini E, et al. Biologically compatible neural interface to safely couple nanocoated electrodes to the surface of the brain. ACS Nano. 2013;7:3887–3895.
  • Cui X, Martin DC. Fuzzy gold electrodes for lowering impedance and improving adhesion with electrodeposited conducting polymer films. Sens Actuators A Phys. 2003;103:384–394.
  • Brüggemann D, Wolfrum B, Maybeck V, et al. Nanostructured gold microelectrodes for extracellular recording from electrogenic cells. Nanotechnology. 2011;22:265104.
  • Dankerl M, Eick S, Hofmann B, et al. Diamond transistor array for extracellular recording from electrogenic cells. Adv Funct Mater. 2009;19:2915–2923.
  • Blaschke BM, Lottner M, Drieschner S, et al. Flexible graphene transistors for recording cell action potentials. 2D Mater. 2016;3:25007.
  • Ojovan SV. A feasibility study of multi-site,intracellular recordings from mammalian neurons by extracellular gold mushroom-shaped microelectrodes. Sci Rep. 2015;5.
  • Robinson JT, Jorgolli M, Shalek AK, et al. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat Nanotechnol. 2012;7:180.
  • Xie C, Lin Z, Hanson L, et al. Intracellular recording of action potentials by nanopillar electroporation. Nat Nanotechnol. 2012;7:185.
  • Qing Q, Jiang Z, Xu L, et al. Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat Nanotechnol. 2014;9:142.
  • Suyatin DB, Wallman L, Thelin J, et al. Nanowire-based electrode for acute in vivo neural recordings in the brain. PLoS One. 2013;8:e56673.
  • Castagnola E, Maggiolini E, Ceseracciu L, et al. pHEMA encapsulated PEDOT-PSS-CNT microsphere microelectrodes for recording single unit activity in the brain. Front Neurosci. 2016;10:1–14.
  • Zhong Y, Bellamkonda RV. Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes. Brain Res. 2007;1148:15–27.
  • Feiner R, Dvir T. Tissue–electronics interfaces: from implantable devices to engineered tissues. Nat Rev Mater. 3,17076 (2018).
  • Pires F, Ferreira Q, Rodrigues CAV, et al. Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate : expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering. Biochim Biophys Acta. 2015;1850:1158–1168.
  • Luo X, Weaver CL, Zhou DD, et al. Highly stable carbon nanotube doped poly (3, 4-ethylenedioxythiophene) for chronic neural stimulation. Biomaterials. 2011;32:5551–5557.
  • Maiolo L, Polese D, Pecora A, et al. Highly disordered array of silicon nanowires: an effective and scalable approach for performing and flexible electrochemical biosensors. Adv Healthc Mater. 2016;5:575–583.
  • Convertino A, Mussi V, Maiolo L. Disordered array of Au covered Silicon nanowires for SERS biosensing combined with electrochemical detection. Sci Rep. 2016;6:25099.
  • Hanson L, Lin ZC, Xie C, et al. Characterization of the cell–nanopillar interface by transmission electron microscopy. Nano Lett. 2012;12:5815–5820.
  • Persson H, Købler C, Mølhave K, et al. Fibroblasts cultured on nanowires exhibit low motility, impaired cell division, and DNA damage. Small. 2013;9:4006–4016.
  • Liu J, Fu T-M, Cheng Z, et al. Syringe-injectable electronics. Nat Nanotechnol. 2015;10:629–636.
  • Park D, Hamm JM, Page AF, et al. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat Commun. 2014;5:1–11.
  • Qiang Y, Artoni P, Seo KJ, et al. Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain. Sci. Adv.2018,4(9), eaat0626.
  • Suo Z, Ma EY, Gleskova H, et al. Mechanics of rollable and foldable film-on-foil electronics. Appl Phys Lett. 1999;74:1177–1179.
  • Fang H, Zhao J, Yu KJ, et al. Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems. 2016;113:11682–11687.
  • Ferrone A Jiang X, Maiolo L, et al. A fabric-based wearable band for hand gesture recognition based on filament strain sensors: A preliminary investigation. in 2016 IEEE Healthcare Innovation Point-of-Care Technologies Conference, HI-POCT 2016; 2016. doi:10.1109/HIC.2016.7797710
  • Liu J. Syringe injectable electronics. Biomimetics Through Nanoelectron. Springer Theses (Recognizing Outstanding Ph.D. Research). Springer, Cham 2017;65–93.
  • Campbell PK, Jones KE, Huber RJ, et al. A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans Biomed Eng. 1991;38:758–768.
  • Herwik S, Kisban S, Aarts AAA, et al. Fabrication technology for silicon-based microprobe arrays used in acute and sub-chronic neural recording. J Micromech Microeng. 2009;19:074008.
  • Pazzini L, Polese D, Weinert JF, et al. An ultra-compact integrated system for brain activity recording and stimulation validated over cortical slow oscillations in vivo and in vitro. Sci Rep. 2018;8:1–13.
  • Lu B, Yuk H, Lin S, et al. Pure PEDOT : PSS hydrogels. Nat Commun. 2019;10.
  • Lee W, Kim D, Matsuhisa N, et al. Transparent, conformable, active multielectrode array using organic electrochemical transistors. PNAS. 2017;114.
  • Won SM, Song E, Zhao J, et al. Recent advances in materials, devices, and systems for neural interfaces. Adv Mater. 2018;30:1–19.
  • Angotzi GN, Boi F, Lecomte A, et al. SiNAPS: an implantable active pixel sensor CMOS-probe for simultaneous large-scale neural recordings. Biosens Bioelectron. 2019;126:355–364.
  • Raducanu BC, Yazicioglu RF, Lopez CM, et al. Time multiplexed active neural probe with 1356 parallel recording sites. Sensors. 2017;17:1–20.
  • Fortunato G, Pecora A, Maiolo L. Polysilicon thin-film transistors on polymer substrates. Mater Sci Semicond Process. 2012;15:627–641.
  • Valletta A, Gaucci P, Mariucci L, et al. Role of gate oxide thickness in controlling short channel effects in polycrystalline silicon thin film transistors. Appl Phys Lett. 2009;95 033507.
  • Privitera V, Scalese S, La Magna A, et al. Low-temperature annealing combined with laser crystallization for polycrystalline silicon TFTs on polymeric substrate. J Electrochem Soc. 2008;155:H764.
  • Maiolo L, Pecora A, Maita F, et al. Flexible sensing systems based on polysilicon thin film transistors technology. Sensors Actuators B Chem. 2013;179:114–124.
  • An S, Lee J, Kim Y, et al. 2. 8-Inch WQVGA flexible AMOLED using high performance low temperature polysilicon TFT on plastic substrates. Soc. Inf. Display(SID) Symp. Dig., 2010;2–6. DOI:10.1889/1.3500566.
  • Kim CW Jung JG, Choi JB, et al. 59. 1 : invited Paper : LTPS backplane technologies for AMLCDs and AMOLEDs crystallization; 2011. p. 862–865
  • Keren DM, Efrati A, Maita F, et al. Low temperature poly-silicon thin film transistor flexible sensing circuit. 2016 IEEE International Conference on the Science of Electrical Engineering (ICSEE) Eilat, Israel 2016;31–33.
  • Fortunato G, Cuscuna M, Gaucci P, et al. Self-heating effects in p-channel polysilicon TFTs fabricated on different substrates. J Korean Phys Soc. 2009;54:455–463.
  • Gaucci P, Valletta A, Mariucci L, et al. Analysis of self-heating-related instability in self-aligned p-channel polycrystalline-silicon thin-film transistors. IEEE Electron Device Lett. 2010;31:830–832.
  • Maita F Maiolo L, Minotti A, et al. Flexible double stage POSTFT based on Poly-Si technology for robotic skin application. IEEE NANO 2015 15th international conference on nanotechnology; 2016. p. 1313–1316. doi:10.1109/NANO.2015.7388874
  • Maiolo L, Mirabella S, Maita F, et al. Flexible pH sensors based on polysilicon thin film transistors and ZnO nanowalls. Appl Phys Lett. 2014;105:93501.
  • Maita F, Maiolo L, Minotti A, et al. ultraflexible tactile piezoelectric sensor based on low-temperature polycrystalline silicon thin-film transistor technology. IEEE Sens J. 2015;15:3819–3826.
  • Yu KJ, Kuzum D, Hwang SW, et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nature Materials 2016;15:782-791.
  • Viventi J, Kim D-H, Vigeland L, et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci. 2011;14:1599–1605.
  • Christiaens W, Bosman E, Vanfleteren J. UTCP : a novel polyimide-based ultra-thin chip packaging technology. IEEE Transactions on Components and Packaging Technologies 2010;33:754–760.
  • Van Den Brand J, de Kok M, Sridhar A, et al. Flexible and stretchable electronics for wearable healthcare. In 2014 44th European solid-state device research conference; Venice, Italy 2014. p. 206–209. doi:10.1109/ESSDERC.2014.6948796
  • Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science. 2010;327:1603-1607.
  • Fang H, Yu KJ, Gloschat C, et al. Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nat Biomed Eng. 2017;1–23. DOI:10.1038/s41551-017-0038.Capacitively.
  • Someya T. Building bionic skin. IEEE Spectr. 2013;50:50–56.
  • Yeo W-H, Kim Y-S, Lee J, et al. Multifunctional epidermal electronics printed directly onto the skin. Adv Mater. 2013;25:2773–2778.
  • Nomura K, Ohta H, Ueda K, et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science. 2003;300:1269–1272.
  • Fortunato E, Barquinha P, Pimentel A, et al. Recent advances in ZnO transparent thin film transistors. Thin Solid Films. 2005;487:205–211.
  • Fortunato EM, Pereira LM, Barquinha PM et al. High mobility indium free amorphous oxide thin film transistors. Appl Phys Lett. 2008;92:222103.
  • Carcia PF, McLean RS, Reilly MH, et al. Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Appl Phys Lett. 2003;82:1117–1119.
  • Ju S, Facchetti A, Xuan Y, et al. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat Nanotechnol. 2007;2:378–384.
  • Adamopoulos G, Bashir A, Gillin WP, et al. Structural and electrical characterization of ZnO films grown by spray pyrolysis and their application in thin-film transistors. Adv Funct Mater. 2011;21:525–531.
  • Bashir A, Wöbkenberg PH, Smith J, et al. High-performance zinc oxide transistors and circuits fabricated by spray pyrolysis in ambient atmosphere. Adv Mater. 2009;21:2226–2231.
  • Dai MK, Lian JT, Lin TY, et al. High-performance transparent and flexible inorganic thin film transistors: A facile integration of graphene nanosheets and amorphous InGaZnO. J Mater Chem C. 2013;1:5064–5071.
  • Prins MWJ, Grosse‐Holz K-O, Müller G, et al. A ferroelectric transparent thin-film transistor. Appl Phys Lett. 1996;68:3650–3652.
  • Seager CH, McIntyre DC, Warren WL, et al. Charge trapping and device behavior in ferroelectric memories. Appl Phys Lett. 1995;2660:2660.
  • Petti L, Münzenrieder N, Vogt C, et al. Metal oxide semiconductor thin-film transistors for flexible electronics. Appl Phys Rev. 2016;3:021303.
  • Yu X, Marks TJ, Facchetti A. Metal oxides for optoelectronic applications. Nat Mater. 2016;15:383–396.
  • Kim JB, Fuentes-Hernandez C, Hwang DK, et al. Vertically stacked hybrid organic-inorganic complementary inverters with low operating voltage on flexible substrates. Org Electron Phys Mater Appl. 2011;12:45–50.
  • Oh MS, Choi W, Lee K, et al. Flexible high gain complementary inverter using n-ZnO and p -pentacene channels on polyethersulfone substrate. Appl Phys Lett. 2008;93:1–4.
  • Honda W, Harada S, Ishida S, et al. High-performance, mechanically flexible, and vertically integrated 3D carbon nanotube and InGaZnO complementary circuits with a temperature sensor. Adv Mater. 2015;27:4674–4680.
  • Barquinha P, Fortunato E, Gonçalves A, et al. Influence of time, light and temperature on the electrical properties of zinc oxide TFTs. Superlattices Microstruct. 2006;39:319–327.
  • Fortunato E, Barquinha P, Martins R. Oxide semiconductor thin-film transistors: A review of recent advances. Adv Mater. 2012;24:2945–2986.
  • Someya T, Bao Z, Malliaras GG. The rise of plastic bioelectronics. Nature. 2016;540:379–385.
  • Castagnola E, Maiolo L, Maggiolini E, et al. PEDOT-CNT-coated low-impedance, ultra-flexible, and brain-conformable micro-ECoG arrays. IEEE Trans Neural Syst Rehabil Eng. 2014;23:342–350.
  • Castagnola E Maiolo L, Maggiolini E, et al. Ultra-flexible and brain-conformable micro-electrocorticography device with low impedance PEDOT-carbon nanotube coated microelectrodes. International IEEE EMBS conference on neural engineering. NER;San Diego, CA 2013. p. 927–930. doi:10.1109/NER.2013.6696087
  • Castagnola E, Marrani M, Maggiolini E, et al. Recording high frequency neural signals using conformable and low-impedance ECoG electrodes arrays coated with PEDOT-PSS-PEG. In Advances in Science and Technology (Vol. 102, pp. 77-85). Trans Tech Publications.
  • Simeone D, Cipolloni S, Mariucci L, et al. Pentacene TFTs with parylene passivation layer. Thin Solid Films. 2009;517:6283–6286.
  • Mariucci L, Simeone D, Cipolloni S, et al. Effect of active layer thickness on electrical characteristics of pentacene TFTs with PMMA buffer layer. Solid State Electron. 2008;52:412–416.
  • Someya T, Sekitani T, Iba S, et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc Natl Acad Sci. 2004;101:9966–9970.
  • Katz H, Kato Y, Sekitani T, et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci. 2002;98:4835–4840.
  • Khan S, Lorenzelli L, Dahiya RS. Technologies for printing sensors and electronics over large flexible substrates: A review. IEEE Sens J. 2015;15:3164–3185.
  • Benight SJ, Wang C, Tok JBH, et al. Stretchable and self-healing polymers and devices for electronic skin. Prog Polym Sci. 2013;38:1961–1977.
  • Reese C, Roberts M, Ling M, et al. Organic thin-film transistors. Mater Today. 2004;7:28–35.
  • Lago N, Cester A. Flexible and organic neural interfaces: a review. Appl Sci. 2017;7(12)1292.
  • Khodagholy D, Doublet T, Quilichini P, et al. In vivo recordings of brain activity using organic transistors. Nat Commun. 2013;4:1575.
  • Drack M, Graz I, Sekitani T, et al. An imperceptible plastic electronic wrap. Adv Mater. 2014;27:34–40.
  • Ng KA, Greenwald E, Xu YP, et al. Implantable neurotechnologies: a review of integrated circuit neural amplifiers. Med Biol Eng Comput. 2016;54:45–62.
  • Hong JH Liang, MC, Haung MY, et al. Analog front-end circuit with low-noise amplifier and high-pass sigma-delta modulator for an EEG or ECoG acquisition system. Proceedings - 2014 IEEE international conference on bioinformatics, ISBB 2011; 2011. p. 17–20. doi:10.1109/ISBB.2011.6107634
  • Robinet S, Audebert P, Regis G, et al. A low-power 0.7 μv rms 32-channel mixed-signal circuit for ECoG recordings. IEEE J Emerg Sel Top Circuits Syst. 2011;1:451–460.
  • Gao H, Walker RM, Nuyujukian P, et al. HermesE: A 96-channel full data rate direct neural interface in 0.13 μm CMOS. IEEE J Solid-State Circuits. 2012;47:1043–1055.
  • Cheng CH, Chen ZX, Wu CY A 16-channel CMOS chopper-stabilized analog front-end acquisition circuits for ECoG detection. proceedings - IEEE International Symposium on Circuits and Systems; Baltimore, MD 2017. p. 4–7. doi:10.1109/ISCAS.2017.8050954
  • Chang CW, Chiou JC, A Wireless and batteryless microsystem with implantable grid electrode/3-dimensional probe array for ECoG and extracellular neural recording in rats. Sensors, 2013;4624–4639. DOI:10.3390/s130404624.
  • Matsushita K, Hirata M, Suzuki T, et al. A fully implantable wireless ECoG 128-channel recording device for human brain – machine interfaces. Front Neurosci. 2018;12:1–11.
  • Mestais CS, Charvet G, Sauter-starace F, et al. WIMAGINE : wireless 64-channel ECoG recording implant for long term clinical applications. IEEE Trans Neural Syst Rehabil Eng. 2015;23:10–21.
  • Karimi-bidhendi A, Malekzadeh-Arasteh O, Lee MC, et al. CMOS ultralow power brain signal acquisition front-ends : design and human testing. IEEE Transactions on Biomedical Circuits and Systems. 2017;11:1111–1122.
  • Polese D, Pazzini L, Delgado-Martínez I, et al. An ultra-compact low-powered closed-loop device for control of the neuromuscular system. In International Conference on Artificial Neural Networks. Cham: Springer;. 2017. p. 60-67.
  • Kassiri H, Tonekaboni S, Salam MT, et al. Closed-loop neurostimulators: a survey and a seizure-predicting design example for intractable epilepsy treatment. IEEE Trans Biomed Circuits Syst. 2017;11:1026–1040.
  • Liu X, Zhang M, Xiong T, et al. A fully integrated wireless compressed sensing neural signal acquisition system for chronic recording and brain machine interface. IEEE Trans Biomed Circuits Syst. 2016;10:874–883.
  • Lee B, Jia Y, Mirbozorgi SA, et al. An inductively powered wireless neural recording and stimulation system for freely-behaving animals. IEEE Trans Biomed Circuits Syst. 2019;13:1.
  • Chan YC, Luk DY. Effects of bonding parameters on the reliability performance of anisotropic conductive adhesive interconnects for flip-chip-on-flex packages assembly I. Different bonding temperature. Microelectron Reliab. 2002;42:1185–1194.
  • Li M, Wu Y, Zhang L, et al. Liquid metal-based electrical interconnects and interfaces with excellent stability and reliability for flexible electronics. Nanoscale. 2019;11:5441–5449.
  • Dang W, Vinciguerra V, Lorenzelli L, et al. Printable stretchable interconnects. Flex Print Electron. 2017;2:013003.
  • Karandrea A, Invasive and non-invasive neural interfaces: forecasts and applications 2018–2028. IDtechex. 2018.
  • Schwarz DA, Lebedev MA, Hanson TL, et al. Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys. Nat Methods. 2014;11:670–676.
  • Borton DA, Yin M, Aceros J, et al. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates. J Neural Eng. 2013;10:026010.
  • Yin M, Borton DA, Komar J, et al. Wireless neurosensor for full-spectrum electrophysiology recordings during free behavior. Neuron. 2014.17;84(6):1170-82 DOI:10.1016/j.neuron.2014.11.010
  • Hochberg LR, Bacher D, Jarosiewicz B, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012;485:213–216.
  • Nuyujukian P, Albites Sanabria J, Saab J, et al. Cortical control of a tablet computer by people with paralysis. PLoS One. 2018;13:1–16.
  • Shin G, Gomez AM, Al-Hasani R, et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron. 2017;93(3):509-521.
  • Mendes PM. Cellular nanotechnology : making biological interfaces smarter. Chem Soc Rev. 2013;42:9207–9218.
  • Nguyen-Vu TDB, Chen H, Cassell AM, et al. Vertically aligned carbon nanofiber architecture as a multifunctional 3-D neural electrical interface. IEEE Trans Biomed Eng. 2007;54:1121–1128.
  • Liu X, Wang S. Three-dimensional nano-biointerface as a new platform for guiding cell fate. Chem Soc Rev. 2014;43:2385–2401.
  • Novellino A, D’Angelo P, Cozzi L, et al. Connecting neurons to a mobile robot: an in vitro bidirectional neural interface. Comput Intell Neurosci. 2007;2007:1–13.
  • Saracino E. Silicon Nanowire and Electrospun Nanofibre Polymer Interfaces and Devices to Alter Non Excitable Brain Cell Morphology and Functionality. in MRS fall meeting (2018); Boston, MA 2018.
  • Sanchez-Vives MV, McCormick DA. Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci. 2000;3:1027–1034.
  • Neely RM, Piech DK, Santacruz SR, et al. Recent advances in neural dust: towards a neural interface platform.. Curr Opin Neurobiol. 2018;50:64–71.