6,369
Views
21
CrossRef citations to date
0
Altmetric
Review Articles

Advances in thermodynamic modelling of nanoparticles

ORCID Icon
Article: 1668299 | Received 12 Aug 2019, Accepted 09 Sep 2019, Published online: 14 Oct 2019

References

  • Feynman RP. There’s plenty of room at the bottom. J Microelectromech Syst. 1992;1:968–988.
  • Pennycook SJ, Varela M, Hetherington CJD, et al. Materials advances through aberration corrected electron microscopy. MRS Bull. 2006;31:36–43.
  • Marks LD. What are the resolution limits in electron microscopes? Physics. 2013;6:82.
  • Hawkes PW. Aberration correction past and present. Phil Trans R Soc A. 2009;367:3637–3664.
  • Hill TL. Biographical Memoirs (2015) National Academy of Sciences, written by Ralph V. Chamberlin with a personal recollection by William A. Eaton. 1917-1924. http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/hill-terrell.pdf
  • Hill TL. Thermodynamics of small systems. J Chem Phys. 1962;36:3182.
  • Hill TL. Thermodynamics of small systems. Mineola, New York: Dover Publications; 1964.
  • Hill TL. A different approach to nanothermodynamics. Nano Lett. 2001;1:273–275.
  • Esfarjani K, Mansoori GA. Statistical mechanical modeling and its application to nanosystems. M.R.A.W. Schommers, editor. Handbook of Theoretical and Computational Nanotechnology; Stevenson Ranch, California: American Scientific Publishers. 2005.
  • Leitner J, Sedmidubský D. Teaching nano-thermodynamics: Gibbs energy of single-component nanoparticles. World J Chem Educ. 2017;5:206–209.
  • Kaptay G. The Gibbs equation versus the Kelvin and the Gibbs-Thomson equations to describe nucleation and equilibrium of nano-materials. J Nanosci Nanotechnol. 2011;12:1–9.
  • Li ZH, Truhlar DG. Nanothermodynamics of metal nanoparticles. Chem Sci. 2014;5:2605–2624.
  • Vakili-Nezhaad GR, Mansoori GA. An application of non-extensive statistical mechanics to nanosystems. J Comput Theor Nanosci. 2004;1:233–235.
  • Chamberlin RV. The big world of nanothermodynamics. Entropy. 2015;17:52–73.
  • Wang CX, Yang GW. Thermodynamics of metastable phase nucleation at the nanoscale. Mater Sci Eng R. 2005;49:157–202.
  • Mansoori GA. Principles of nanotechnology. Singapore: World Scientific; 2005.
  • Guenther G, Guillon O. Models of size-dependent nanoparticle melting tested on gold. J Mater Sci. 2014;49:7915–7932.
  • Roduner E. Size matters: why nanomaterials are different. Chem Soc Rev. 2006;35:583–592.
  • Prigogine I, Stuart AR. Evolution of size effects in chemical dynamics – part 2. United States of America: John Wiley & Sons; 1988.
  • Tsallis C. Possible generalization of Boltzmann-Gibbs statistics. J Stat Mech. 1988;52:479–487.
  • Tsallis C. The nonadditive entropy Sq and its applications in physics and elsewhere: some remarks. Entropy. 2011;13:1765–1804.
  • Tsallis C. Thermodynamics and statistical mechanics for complex systems – foundations and applications. Acta Phys Pol B. 2015;46:1089–1101.
  • Cartwright J. Roll over, Boltzmann. Physics World. 2014 May; 2014: 31–35.
  • Penrose O. Foundations of statistical mechanics: a deductive treatment. Pergamon: Elsevier; 1970.
  • Lucia U. A link between nano- and classical thermodynamics: dissipation analysis (The entropy generation approach in nano-thermodynamics). Entropy. 2015;17:1309–1328.
  • García-Morales V, Cervera J, Pellicer J. Correct thermodynamic forces in Tsallis thermodynamics: connection with Hill nanothermodynamics. Phys Lett A. 2005;336:82–88.
  • Feshbach H. Small systems – when does thermodynamics apply. Phys Today. 1987;40:9.
  • Mohazzabi P, Mansoori GA. Why nanosystems and macroscopic systems behave differently? Int J Biomed Nanosci Nanotechnol. 2005;1:53–60.
  • Murphy C, How can you calculate how many atoms are in a nanoparticle?, 2016, blog post, http://sustainable-nano.com/2016/07/28/how-many-atoms-are-in-a-nanoparticle/
  • Wautelet M, Shirinyan AS. Thermodynamics: nano vs. macro. Pure Appl Chem. 2009;81:1921–1930.
  • Hänggi P, Hilbert S, Dunkel J. Meaning of temperature in different thermostatistical ensembles. Phil Trans R Soc A. 2016;374:20150039.
  • Vollath D, Fischer FD. Structural fluctuations in nanoparticles. J Nanopart Res. 2009;11:433–439.
  • Kuzemsky AL. Thermodynamic limit in statistical physics. Int J Modern Phys B. 28:1430004.
  • Rajagopal AK, Pande CS, Abe S. Nanothermodynamics: a generic approach to material properties at nanoscale. arXiv preprint cond-mat/0403738. 2004.
  • Cahill DG, Ford WK, Goodson KE, et al. Nanoscale thermal transport. J Appl Phys. 2003;93:793–818.
  • Bourgeois O, Tainoff D, Tavakoli A, et al. Reduction of phonon mean free path: from low-temperature physics to room temperature applications in thermoelectricity. C R Phys. 2016;17:1154–1160.
  • Wautelet M, Duvivier D. The characteristic dimensions of the nanoworld. Eur J Phys. 2007;28:953.
  • Nano equation unveiled. Phys World. 2009;22:5. https://doi.org/10.1088/2058-7058/22/12/8.
  • Guisbiers G. Size-dependent materials properties toward a universal equation. Nanoscale Res Lett. 2010;5:1132–1136.
  • Guisbiers G, Buchaillot L. Universal size/shape-dependent law for characteristic temperatures. Phys Lett A. 2009;374:305–308.
  • Guisbiers G, Jose-Yacaman M. Use of chemical functionalities to control stability of nanoparticles. Encyclopedia of Interfacial Chemistry: surface Science and Electrochemistry. 2017.
  • Xiong S, Qi W, Cheng Y, et al. Universal relation for size dependent thermodynamic properties of metallic nanoparticles. Phys Chem Chem Phys. 2011;13:10652–10660.
  • Yang CC, Xiao MX, Li W, et al. Size effects on Debye temperature, Einstein temperature, and volume thermal expansion coefficient of nanocrystals. Solid State Commun. 2006;139:148–152.
  • Maioli P, Stoll T, Sauceda HE, et al. Mechanical vibrations of atomically defined metal clusters: from nano- to molecular-size oscillators. Nano Lett. 2018;18:6842–6849.
  • Sauceda HE, Pelayo JJ, Salazar F, et al. Vibrational spectrum, caloric curve, low-temperature heat capacity, and Debye temperature of sodium clusters: the Na139+ case. J Phys Chem C. 2013;117:11393–11398.
  • Vanithakumari SC, Nanda KK. A universal relation for the cohesive energy of nanoparticles. Phys Lett A. 2008;372:6930–6934.
  • Guisbiers G. Review on the analytical models describing melting at the nanoscale. J Nanosci Lett. 2012;2:8.
  • Nanda KK. Size-dependent melting of nanoparticles: hundred years of thermodynamic model. Pramana. 2009;72:617–628.
  • Calvo F. Thermodynamics of nanoalloys. Phys Chem Chem Phys. 2015;17:27922–27939.
  • Guisbiers G, Buchaillot L. Modeling the melting enthalpy of nanomaterials. J Phys Chem C. 2009;113:3566–3568.
  • Foster DM, Pavloudis T, Kioseoglou J, et al. Atomic-resolution imaging of surface and core melting in individual size-selected Au nanoclusters on carbon. Nat Commun. 2019;10:2583.
  • Kjelstrup S, Schnell SK, Vlugt TJ, et al. Bridging scales with thermodynamics: from nano to macro. Adv Nat Sci. 2014;5:023002.
  • Schnell SK, Liu X, Simon J-M, et al. Calculating thermodynamic properties from fluctuations at small scales. J Phys Chem A. 2011;115:10911–10918.
  • Schnell SK, Vlugt TJH, Simon J-M, et al. Thermodynamics of small systems embedded in a reservoir: adetailed analysis of finite size effects. Mol Phys. 2012;110:1069–1079.
  • Qi W. Nanoscopic thermodynamics. Acc Chem Res. 2016;49:1587–1595.
  • Schnell SK, Vlugt TJH, Simon J-M, et al. Thermodynamics of a small system in a μT reservoir. Chem Phys Lett. 2011;504:199–201.
  • Vanvechten JA, Wautelet M. Variation of semiconductor band-gaps with lattice temperature and with carrier temperature when these are not equal. Phys Rev B. 1981;23:5543–5550.
  • Guisbiers G, Liu D, Jiang Q, et al. Theoretical predictions of wurtzite III-nitride nano-materials properties. Phys Chem Chem Phys. 2010;12:7203–7210.
  • Bonham B, Guisbiers G. Thermal stability and optical properties of Si–Ge nanoparticles. Nanotechnology. 2017;28:245702.
  • Guisbiers G, Wautelet M, Buchaillot L. Phase diagrams and optical properties of phosphide, arsenide, and antimonide binary and ternary III-V nanoalloys. Phys Rev B. 2009;79.
  • Guisbiers G, Van Overschelde O, Wautelet M. Theoretical investigation of size and shape effects on the melting temperature and energy bandgap of TiO2 nanostructures. Appl Phys Lett. 2008;92.
  • Li M, Li JC. Size effects on the band-gap of semiconductor compounds. Mater Lett. 2006;60:2526–2529.
  • Zallen R. The physics of amorphous solids. United States of America: Wiley; 1983.
  • Yang CC, Li S. Size, dimensionality, and constituent stoichiometry dependence of bandgap energies in semiconductor quantum dots and wires. J Phys Chem C. 2008;112:2851–2856.
  • Yang CC, Mai YW. Thermodynamics at the nanoscale: a new approach to the investigation of unique physicochemical properties of nanomaterials. Mater Sci Eng R-Rep. 2014;79:1–40.
  • Yang CC, Jiang Q. Size effect on the bandgap of II–VI semiconductor nanocrystals. Mater Sci Eng B. 2006;131:191–194.
  • Geoffrion LD, Guisbiers G. Quantum confinement: size on the grill. Nanoscale (submitted). 2019.
  • Marks LD, Peng L. Nanoparticle shape, thermodynamics and kinetics. J Phys-Condens Matter. 2016;28.
  • Ringe E, Van Duyne RP, Marks LD. Wulff construction for alloy nanoparticles. Nano Lett. 2011;11:3399–3403.
  • Jellinek J. Nanoalloys: tuning properties and characteristics through size and composition. Faraday Discuss. 2008;138:11–35.
  • Ferrando R, Jellinek J, Johnston RL. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev. 2008;108:845–910.
  • Tanaka T, Hara S. Thermodynamic evaluation of nano-particle binary alloy phase diagrams. Zeitschrift Fur Metallkunde. 2001;92:1236–1241.
  • Kaptay G. Nano-Calphad: extension of the Calphad method to systems with nano-phases and complexions. J Mater Sci. 2012;47:8320–8335.
  • Liang LH, Liu D, Jiang Q. Size-dependent continuous binary solution phase diagram. Nanotechnology. 2003;14:438.
  • Allen LH, Lai SL. MEMS-based scanning calorimeter for thermodynamic properties of nanostructures. Microscale Thermophys Eng. 1998;2:11–19.
  • Lai SL, Carlsson JRA, Allen LH. Melting point depression of Al clusters generated during the early stages of film growth: nanocalorimetry measurements. Appl Phys Lett. 1998;72:1098–1100.
  • Zhang M, Efremov MY, Schiettekatte F, et al. Size-dependent melting point depression of nanostructures: nanocalorimetric measurements. Phys Rev B. 2000;62:10548–10557.
  • Barnard AS. Modelling of nanoparticles: approaches to morphology and evolution. Rep Prog Phys. 2010;73.
  • Landman U. Materials by numbers: computations as tools of discovery. Proc Natl Acad Sci U S A. 2005;102:6671–6678.
  • Guisbiers G, Mendoza-Perez R. Comment on ‘Phase stability and segregation behavior of nickel-based nanoalloys based on theory and simulation’. J Alloys Compd. 2017;723:1079–1081.
  • Lee J, Park J, Tanaka T. Effects of interaction parameters and melting points of pure metals on the phase diagrams of the binary alloy nanoparticle systems: a classical approach based on the regular solution model. Calphad. 2009;33:377–381.
  • Pirart J, Front A, Rapetti D, et al. Reversed size-dependent stabilization of ordered nanophases. Nat Commun. 2019;10:1982.
  • Palomares-Baez JP, Panizon E, Ferrando R. Nanoscale effects on phase separation. Nano Lett. 2017;17:5394–5401.
  • Ferrando R. Symmetry breaking and morphological instabilities in core-shell metallic nanoparticles. J Phys-Condens Matter. 2015;27.
  • Einstein A. Autobiographical notes. Open Court; United States of America: Centennial edition; 1999.
  • Hornyak GL, Tibbals HF, Dutta J, Moore JJ. Introduction to nanoscience & nanotechnology. Boca Raton, Florida: CRC Press; 2009.
  • Guisbiers G, Mendoza-Cruz R, Bazán-Díaz L, et al. Electrum, the gold-silver alloy, from the bulk scale to the nanoscale: synthesis, properties, and segregation rules. Acs Nano. 2016;10:188–198.
  • Park J, Lee J. Phase diagram reassessment of Ag–Au system including size effect. Calphad. 2008;32:135–141.
  • Monji F, Jabbareh MA. Thermodynamic model for prediction of binary alloy nanoparticle phase diagram including size dependent surface tension effect. Calphad. 2017;58:1–5.
  • Zhao N, He YQ, Yang CC. A new approach to construct bulk and size-dependent continuous binary solution phase diagrams of alloys. RSC Adv. 2015;5:96323–96327.
  • Guisbiers G, Mejia-Rosales S, Khanal S, et al. Gold copper nano-alloy, ‘Tumbaga’, in the era of nano: phase diagram and segregation. Nano Lett. 2014;14:6718–6726.
  • Mendoza-Cruz R, Bazán-Diaz L, Velázquez-Salazar JJ, et al. Order-disorder phase transitions in Au-Cu nanocubes: from nano-thermodynamics to synthesis. Nanoscale. 2017;9:9267–9274.
  • Hourlier D, Perrot P. Au-Si and Au-Ge phases diagrams for nanosytems. Mater Sci Forum. 2010;653:77–85.
  • Tanaka T, Guisbiers G. Prediction of phase diagrams in nano-sized binary alloys. Mater Sci Forum. 2010;653:55–75.
  • Sopousek J, Pinkas J, Brož P, et al. Ag-Cu colloid synthesis: bimetallic nanoparticle characterisation and thermal treatment. J Nanomater. 2014;638964.
  • Atanasov I, Ferrando R, Johnston RL. Structure and solid solution properties of Cu–Ag nanoalloys. J Phys. 2014;26:275301.
  • Zhao Z, Fischer A, Cheng D. Phase diagram and segregation of Ag–Co nanoalloys: insights from theory and simulation. Nanotechnology. 2016;27:115702.
  • Kim DH, Kim HY, Ryu JH, et al. Phase diagram of Ag–Pd bimetallic nanoclusters by molecular dynamics simulations: solid-to-liquid transition and size-dependent behavior. Phys Chem Chem Phys. 2009;11:5079–5085.
  • Sim K, Lee J. Phase stability of Ag–Sn alloy nanoparticles. J Alloys Compd. 2014;590:140–146.
  • Lopes A, Tréglia G, Mottet C, et al. Ordering and surface segregation in Co1−cPtc nanoparticles: a theoretical study from surface alloys to nanoalloys. Phys Rev B. 2015;91:035407.
  • Qi W, Li Y, Xiong S, et al. Modeling size and shape effects on the order–disorder phase‐transition temperature of CoPt nanoparticles. Small. 2010;6:1996–1999.
  • Guisbiers G, Khanal S, Ruiz-Zepeda F, et al. Cu-Ni nano-alloy: mixed, core-shell or Janus nano-particle? Nanoscale. 2014;6:14630–14635.
  • Sopousek J, Vrestal J, Pinkas J, et al. Cu–Ni nanoalloy phase diagram – prediction and experiment. Calphad. 2014;45:33–39.
  • Shirinyan AS. Two-phase equilibrium states in individual Cu–Ni nanoparticles: size, depletion and hysteresis effects. Beilstein J Nanotechnol. 2015;6:1811–1820.
  • Jiang Q, Yang CC. Size effect on the phase stability of nanostructures. Curr Nanosci. 2008;4:179–200.
  • Guisbiers G, Mendoza-Pérez R, Bazán-Díaz L, et al. Size and shape effects on the phase diagrams of nickel-based bimetallic nanoalloys. J Phys Chem C. 2017;121:6930–6939.
  • Magnin Y, Zappelli A, Amara H, et al. Size dependent phase diagrams of nickel-carbon nanoparticles. Phys Rev Lett. 2015;115:205502.
  • Sopousek J, Vrestal J, Zemanova A, et al. Phase diagram prediction and particle characterization of Sn-Ag nano alloy for low melting point lead-free solders. J Min Metall Sect B Metall. 2012;48:419–425.
  • Ghasemi M, Zanolli Z, Stankovski M, et al. Size- and shape-dependent phase diagram of In–Sb nano-alloys. Nanoscale. 2015;7:17387–17396.
  • Mendoza-Perez R, Guisbiers G. Bimetallic Pt- Pd nano-catalyst: size, shape and composition matter. Nanotechnology. 2019;30(30):305702.
  • Guisbiers G, Abudukelimu G, Hourlier D. Size-dependent catalytic and melting properties of platinum-palladium nanoparticles. Nanoscale Res Lett. 2011. 6;396.
  • Pohl J, Stahl C, Albe K. Size-dependent phase diagrams of metallic alloys: a Monte Carlo simulation study on order–disorder transitions in Pt–Rh nanoparticles. Beilstein J Nanotechnol. 2012;3:1–11.
  • Dahan Y, Makov G, Shneck RZ. Nanometric size dependent phase diagram of Bi–Sn. Calphad. 2016;53:136–145.
  • Guisbiers G, Kazan M, Van Overschelde O, et al. Mechanical and thermal properties of metallic and semiconductive nanostructures. J Phys Chem C. 2008;112:4097–4103.
  • Guisbiers G, Lara HH, Mendoza-Cruz R, et al. Inhibition of Candida albicans biofilm by pure selenium nanoparticles synthesized by pulsed laser ablation in liquids. Nanomed. 2017;13:1095–1103.
  • Vossmeyer T, Katsikas L, Giersig M, et al. Cds nanoclusters – synthesis, characterization, size-dependent oscillator strength, temperature shift of the excitonic-transition energy, and reversible absorbency shift. J Phys Chem. 1994;98:7665–7673.
  • Torimoto T, Kontani H, Shibutani Y, et al. Characterization of ultrasmall CdS nanoparticles prepared by the size-selective photoetching technique. J Phys Chem B. 2001;105:6838–6845.
  • Soltani N, Gharibshahi E, Saion E. Band gap of cubic and hexagonal Cds quantum dots – experimental and theoretical studies. Chalcogenide Lett. 2012;9:321–328.
  • Banerjee R, Jayakrishnan R, Ayyub P. Effect of the size-induced structural transformation on the band gap in CdS nanoparticles. J Phys-Condens Matter. 2000;12:10647–10654.
  • Bazán-Díaz L, Mendoza-Cruz R, Velázquez-Salazar JJ, et al. Gold–copper nanostars as photo-thermal agents: synthesis and advanced electron microscopy characterization. Nanoscale. 2015;7:20734–20742.