1,854
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Theory and simulation of objects in liquid crystals

Article: 1806728 | Received 28 Jun 2020, Accepted 02 Aug 2020, Published online: 24 Aug 2020

References

  • Meyer RB. Point disclinations at a nematic-isotropic liquid interface. Mol Cryst Liq Cryst. 1972;16:355–40.
  • Terentjev EM. Disclination loops, standing alone and around solid particles, in nematic liquid crystals. Phys Rev E. 1995 Feb;51:1330–1337.
  • Gu Y, Abbott NL. Observation of saturn-ring defects around solid microspheres in nematic liquid crystals. Phys Rev Lett. 2000 Nov;85:4719–4722.
  • Onsager L. The effects of shape on the interaction of colloidal particles. Ann N Y Acad Sci. 1949;51:627–659.
  • Maier W, Saupe A. Eine einfache molekular-statistische theorie der nematischen kristallinflüssigen phase. teil l. Z Naturforschung A. 1959;14:882–889.
  • Maier W, Saupe A. Eine einfache molekular-statistische theorie der nematischen kristallinflüssigen phase. teil ii. Z Naturforschung A. 1960;15:287–292.
  • Humphries RL, James PG, Luckhurst GR. Molecular field treatment of nematic liquid crystals. J Chem Soc Faraday Trans 2. 1972;68:1031–1044.
  • de Gennes P, Prost J. The physics of liquid crystals. 2nd ed. Oxford: Clarendon Press; 1993.
  • Bunning JD, Crellin DA, Faber TE. The effect of molecular biaxiality on the bulk properties of some nematic liquid crystals. Liq Cryst. 1986;1:37–51.
  • Karat P, Madhusudana N. Elastic and optical properties of some 4′-n-Alkyl-4-Cyanobiphenyls. Mol Cryst Liq Cryst. 1976;36:51–64.
  • Dalmolen LGP, Picken SJ, de Jong AF, et al. The order parameters <P2> and <P4> in nematic p-alkyl-p’ -cyano-biphenyls: polarized Raman measurements and the influence of molecular association. J Phys France. 1985;46:1443–1449.
  • Horn RG. Refractive indices and order parameters of two liquid crystals. J Phys France. 1978;39:105–109.
  • Emsley J, Hamilton K, Luckhurst G, et al. Orientation order in the nematic phase of 4–methoxy–4ʹ–cyanobiphenyl: A deuterium NMR study. Chem Phys Lett. 1984;104:136–142.
  • Fung BM, Poon CD, Gangoda M, et al. Nematic and smectic ordering in 4–n–octyl–4ʹ–cyanobiphenyl studied by carbon– 13 NMR. Mol Cryst Liq Cryst. 1986;141:267–277.
  • Karat PP, Madhusudana NV. Orientational order and elastic constants of some cyanobiphenyls, part iii. Mol Cryst Liq Cryst. 1978;47:21–28.
  • Bhattacharjee B, Paul S, Paul R. Orientational distribution function and order parameters of two 4ʹ–alkoxy–4–cyanobiphenyls in mesomorphic phase. Mol Cryst Liq Cryst. 1982;89:181–192.
  • Limmer S, Schmiedel H, Hillner B, et al. Ordering and intramolecular mobility in the nematic phase of paa investigated by means of NMR lineshape analysis and computer simulations of the lineshape. J Phys France. 1980;41:869–878.
  • Roy SK. Proton NMR studies in some cyano-biphenyls, oxy-cyano-biphenyls and paa at atmospheric pressure. J Phys II France. 1992;2:219–225.
  • Jen S, Clark NA, Pershan PS, et al. Raman scattering from a nematic liquid crystal: orientational statistics. Phys Rev Lett. 1973 Dec;31:1552–1556.
  • Heidenreich S, Ilg P, Hess S. Robustness of the periodic and chaotic orientational behavior of tumbling nematic liquid crystals. Phys Rev E. 2006 Jun;73:061710.
  • Graziano DJ, Mackley MR. Disclinations observed during the shear of mbba. Mol Cryst Liq Cryst. 1984;106:103–119.
  • Frank FC. I. liquid crystals. on the theory of liquid crystals. Discuss Faraday Soc. 1958;25:19–28.
  • Beris AN, Edwards BJ. Thermodynamics of flowing systems. Oxford: Oxford University Press; 1994.
  • Schiele K, Trimper S. On the elastic constants of a nematic liquid crystal. Phys Status Solidi B. 1983;118:267–274.
  • Berreman DW, Meiboom S. Tensor representation of Oseen-Frank strain energy in uniaxial cholesterics. Phys Rev A. 1984 Oct;30:1955–1959.
  • Chen GP, Takezoe H, Fukuda A. Determination of ki (i = 1-3) and µj (j = 2-6) in 5cb by observing the angular dependence of rayleigh line spectral widths. Liq Cryst. 1989;5:341–347.
  • Alexander GP, Yeomans JM. Stabilizing the blue phases. Phys Rev E. 2006 Dec;74:061706.
  • Bogi A, Faetti S. Elastic, dielectric and optical constants of 4ʹ-pentyl-4-cyanobiphenyl. Liq Cryst. 2001;28:729–739.
  • Antipova A, Denniston C. Dynamics of a disc in a nematic liquid crystal. Soft Matter. 2016;12:1279–1294.
  • Changizrezaei S, Denniston C. Heterogeneous colloidal particles immersed in a liquid crystal. Phys Rev E. 2017 May;95:052703.
  • de Groot S, Mazur P. Non-equilibrium thermodynamics. North-Holland, Amsterdam: Dover Publications; 1962.
  • Edwards BJ, Beris AN, Grmela M. Generalized constitutive equation for polymeric liquid crystals part 1. model formulation using the hamiltonian (poisson bracket) formulation. J Non-Newtonian Fluid Mech. 1990;35:51–72.
  • Qian T, Sheng P. Generalized hydrodynamic equations for nematic liquid crystals. Phys Rev E. 1998 Dec;58:7475–7485.
  • Doi M. Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases. J Polym Sci. 1981;19:229–243.
  • Kuzuu N, Doi M. Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation. J Phys Soc Jpn. 1983;52:3486–3494.
  • Doi M. Viscoelasticity of concentrated solutions of stiff polymers. Faraday Symp Chem Soc. 1983;18:49–56.
  • Doi M, Edwards SF. The theory of polymer dynamics. Oxford: Clarendon Press; 1989.
  • Denniston C, Orlandini E, Yeomans J. Simulations of liquid crystals in poiseuille flow. Comput Theor Polym Sci. 2001;11:389–395. Available from: http://www.sciencedirect.com/science/article/pii/S1089315601000046
  • Denniston C, Orlandini E, Yeomans JM. Lattice boltzmann simulations of liquid crystal hydrodynamics. Phys Rev E. 2001 Apr;63:056702.
  • Fournier JB, Galatola P. Modeling planar degenerate wetting and anchoring in nematic liquid crystals. Europhys Lett (EPL). 2005 nov;72:403–409.
  • Brinkman HC. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl Sci Res. 1947;A1:27–34.
  • Brinkman HC. On the permeability of media consisting of closely packed porous particles. Appl Sci Res. 1947;A1:81–86.
  • Debye P, Bueche AM. Intrinsic viscosity, diffusion, and sedimentation rate of polymers in solution. J Chem Phys. 1948;16:573–579.
  • Ollila STT, Ala-Nissila T, Denniston C. Hydrodynamic forces on steady and oscillating porous particles. J Fluid Mech. 2012;709:123–148.
  • Ollila STT, Smith CJ, Ala-Nissila T, et al. The hydrodynamic radius of particles in the hybrid lattice boltzmann–molecular dynamics method. Multiscale Model Simul. 2013;11:213–243.
  • Landau L, Lifshitz E. Theory of elasticity. 3rd ed. Oxford: Pergamon Press; 1986.
  • Ranganath GS. Interaction between a cavity and a singularity in nematics. Mol Cryst Liq Cryst. 1977;40:143–148.
  • Muševič I, Škarabot M, Tkalec U, et al. Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science. 2006;313:954–958. Available from: https://science.sciencemag.org/content/313/5789/954
  • Denniston C, Orlandini E, Yeomans JM. Simulations of liquid crystal hydrodynamics in the isotropic and nematic phases. Europhys Lett (EPL). 2000 nov;52:481–487.
  • Denniston C, Marenduzzo D, Orlandini E, et al. Lattice boltzmann algorithm for three-dimensional liquid-crystal hydrodynamics. Philos Trans R Soc London Ser A. 2004;362:1745–1754.
  • Nash RW, Adhikari R, Cates ME. Singular forces and pointlike colloids in lattice boltzmann hydrodynamics. Phys Rev E. 2008 Feb;77:026709.
  • Antipova A, Denniston C. Dynamics of disk pairs in a nematic liquid crystal. Phys Rev E. 2016 Nov;94:052704.
  • Marenduzzo D, Orlandini E, Cates ME, et al. Steady-state hydrodynamic instabilities of active liquid crystals: hybrid lattice boltzmann simulations. Phys Rev E. 2007 Sep;76:031921.
  • Mackay F, Denniston C. Coupling MD particles to a lattice-boltzmann fluid through the use of conservative forces. J Comput Phys. 2013;237:289–298.
  • Smith CJ, Denniston C. Elastic response of a nematic liquid crystal to an immersed nanowire. J Appl Phys. 2007;101:014305.
  • Chandraesekhar S. Liquid crystals. London: Cambridge University Press; 1992.
  • Morse P, Feshbach H. Methods of theoretical physics. New york: McGraw-Hill; 1953.
  • Jackson JD. Charge density on thin straight wire, revisited. Am J Phys. 2000;68:789–799.
  • Lapointe C, Hultgren A, Silevitch D, et al. Elastic torque and the levitation of metal wires by a nematic liquid crystal. Science (New York, NY). 2004 02;303:652–655.
  • Rovner J, Borgnia D, Reich D, et al. Elastic and hydrodynamic torques on a colloidal disk within a nematic liquid crystal. Phys Rev E, Stat Nonlinear Soft Matter Phys. 2012 10;86:041702.
  • Alama S, Bronsard L, Lamy X. Analytical description of the saturn-ring defect in nematic colloids. Phys Rev E. 2016 Jan;93:012705.
  • Alama S, Bronsard L, Lamy X. Minimizers of the Landau-de Gennes energy around a spherical colloid particle. Arch Ration Mech Anal. 2016 Oct;222:427.
  • Alama S, Bronsard L, Lamy X. Spherical particle in nematic liquid crystal under an external field: the saturn ring regime. J Nonlinear Sci. 2018 Aug;28:1443.
  • Alama S, Bronsard L, Golovaty D, et al. Saturn ring defect around a spherical particle immersed in nematic liquid crystal, Ithaca, Cornell University. arXiv:200404973v1; 2020.
  • Kuksenok OV, Ruhwandl RW, Shiyanovskii SV, et al. Director structure around a colloid particle suspended in a nematic liquid crystal. Phys Rev E. 1996 Nov;54:5198–5203.
  • Schopohl N, Sluckin TJ. Defect core structure in nematic liquid crystals. Phys Rev Lett. 1987 Nov;59:2582–2584.
  • Stark H. Physics of colloidal dispersions in nematic liquid crystals. Phys Rep. 2001;351:387–474.
  • Lintuvuori JS, Marenduzzo D, Stratford K, et al. Colloids in liquid crystals: a lattice boltzmann study. J Mater Chem. 2010;20:10547–10552.
  • Mackay FE, Denniston C. Modelling defect-bonded chains produced by colloidal particles in a cholesteric liquid crystal. EPL (Europhysics Letters). 2011 jun;94:66003.
  • Hijnen N, Wood TA, Wilson D, et al. Self-organization of particles with planar surface anchoring in a cholesteric liquid crystal. Langmuir. 2010;26:13502–13510. PMID: 20695597.
  • Lubensky TC, Pettey D, Currier N, et al. Topological defects and interactions in nematic emulsions. Phys Rev E. 1998 Jan;57:610–625.
  • Tasinkevych M, Silvestre NM, da Gama MMT. Liquid crystal boojum-colloids. New J Phys. 2012 jul;14:073030.
  • Poulin P, Stark H, Lubensky, TC, et al. Novel colloidal interactions in anisotropic fluids. Science. 1997;275:1770–1773.
  • Poulin P, Weitz DA. Inverted and multiple nematic emulsions. Phys Rev E. 1998 Jan;57:626–637.
  • Loudet J-C, Barois P, Poulin P. Colloidal ordering from phase separation in a liquid- crystalline continuous phase. Nature. 2000;407:611–613.
  • Yada M, Yamamoto J, Yokoyama H. Direct observation of anisotropic interparticle forces in nematic colloids with optical tweezers. Phys Rev Lett. 2004 May;92:185501.
  • Smalyukh II, Lavrentovich OD, Kuzmin AN, et al. Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal. Phys Rev Lett. 2005 Oct;95:157801.
  • Jampani VSR, Škarabot M, Čopar S, et al. Chirality screening and metastable states in chiral nematic colloids. Phys Rev Lett. 2013 Apr;110:177801.
  • Ognysta UM, Nych AB, Uzunova VA, et al. Square colloidal lattices and pair interaction in a binary system of quadrupolar nematic colloids. Phys Rev E. 2011 Apr;83:041709.
  • Nazarenko VG, Nych AB, Lev BI. Crystal structure in nematic emulsion. Phys Rev Lett. 2001 Jul;87:075504.
  • Trivedi RP, Tasinkevych M, Smalyukh II. Nonsingular defects and self-assembly of colloidal particles in cholesteric liquid crystals. Phys Rev E. 2016 Dec;94:062703.
  • Gardner DF, Evans JS, Smalyukh II. Towards reconfigurable optical metamaterials: colloidal nanoparticle self-assembly and self-alignment in liquid crystals. Mol Cryst Liq Cryst. 2011;545:3/[1227]–21/[1245].
  • Ravnik M, Alexander GP, Yeomans JM, et al. Three-dimensional colloidal crystals in liquid crystalline blue phases. Proc Nat Acad Sci. 2011;108:5188–5192. Available from: https://www.pnas.org/content/108/13/5188
  • Stratford K, Henrich O, Lintuvuori JS, et al. Self-assembly of colloid-cholesteric composites provides a possible route to switchable optical materials. Nat Commun. 2014;5:3954.
  • Changizrezaei S, Denniston C. Stability of binary colloidal crystals immersed in a cholesteric liquid crystal. Phys Rev E. 2019 May;99:052701.
  • Joannopoulos J, Johnson S, Winn J, et al. Photonic crystals: molding the flow of light. 2nd ed. Princeton, NJ: Princeton University Press; 2008.
  • Ho KM, Chan CT, Soukoulis CM. Existence of a photonic gap in periodic dielectric structures. Phys Rev Lett. 1990 Dec;65:3152–3155.
  • Mackay FE, Denniston C. Locally stable diamond colloidal crystal formed in a cholesteric liquid crystal. Soft Matter. 2014;10:4430–4435.
  • Changizrezaei S, Denniston C. Photonic band structure of diamond colloidal crystals in a cholesteric liquid crystal. Phys Rev E. 2017 Sep;96:032702.
  • Tóth G, Denniston C, Yeomans JM. Hydrodynamics of topological defects in nematic liquid crystals. Phys Rev Lett. 2002 Feb;88:105504.
  • Tóth G, Denniston C, Yeomans JM. Hydrodynamics of domain growth in nematic liquid crystals. Phys Rev E. 2003 May;67:051705.
  • Jung J, Denniston C, Orlandini E, et al. Anisotropy of domain growth in nematic liquid crystals. Liq Cryst. 2003;30:1455–1462.
  • Oswald P, Ignés-Mullol J. Backflow-induced asymmetric collapse of disclination lines in liquid crystals. Phys Rev Lett. 2005 Jul;95:027801.
  • Loudet JC. Stokes drag on a sphere in a nematic liquid crystal. Science. 2004;306:1525.
  • Lintuvuori JS, Stratford K, Cates ME, et al. Colloids in cholesterics: size-dependent defects and non-stokesian microrheology. Phys Rev Lett. 2010 Oct;105:178302.
  • Mackay FE, Denniston C. Deformable vesicles interacting in a nematic liquid crystal. Soft Matter. 2013;9:5285–5292.
  • DeBenedictis A, Atherton TJ, Rodarte AL, et al. Modeling deformation and chaining of flexible shells in a nematic solvent with finite elements on an adaptive moving mesh. Phys Rev E. 2018 Mar;97:032701.
  • Zhang R, Zhou Y, Martínez-González JA, et al. Controlled deformation of vesicles by flexible structured media. Sci Adv. 2016;2:e1600978.
  • Zhou S, Tovkach O, Golovaty D, et al. Dynamic states of swimming bacteria in a nematic liquid crystal cell with homeotropic alignment. New J Phys. 2017 may;19:055006.
  • Lintuvuori JS, Würger A, Stratford K. Hydrodynamics defines the stable swimming direction of spherical squirmers in a nematic liquid crystal. Phys Rev Lett. 2017 Aug;119:068001.
  • Gharbi MA, Nobili M, In M, et al. Behavior of colloidal particles at a nematic liquid crystal interfacec0sm00863j. Soft Matter. 2011;7:1467–1471.
  • Cavallaro M, Gharbi MA, Beller DA, et al. Exploiting imperfections in the bulk to direct assembly of surface colloids. Proc Nat Acad Sci. 2013;110:18804–18808. Available from: https://www.pnas.org/content/110/47/18804
  • Pawsey AC, Lintuvuori JS. Colloidal particles at chiral liquid crystal interfaces. Liq Cryst Today. 2014;23:32–37.
  • Peng C, Turiv T, Guo Y, et al. Sorting and separation of microparticles by surface properties using liquid crystal-enabled electro-osmosis. Liq Cryst. 2018;45:1936–1943.
  • Fadda F, Gonnella G, Marenduzzo D, et al. Switching dynamics in cholesteric liquid crystal emulsions. J Chem Phys. 2017;147:064903.