2,400
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Bubble formation in nanopores: a matter of hydrophobicity, geometry, and size

ORCID Icon & ORCID Icon
Article: 1817780 | Received 23 Jun 2020, Accepted 26 Aug 2020, Published online: 27 Sep 2020

References

  • Arndt REA. Cavitation in fluid machinery and hydraulic structures. Annu Rev Fluid Mech. 1981;13:273–28.
  • Acosta AJ, Parkin BR. Cavitation inception - a selective review. J Ship Res. 1975;19:193–205.
  • Crum LA. Tensile strength of water. Nature. 1979;278:148–149.
  • Huang DM, Chandler D. Temperature and length scale dependence of hydrophobic effects and their possible implications for protein folding. Proc Natl Acad Sci USA. 2000;97:8324–8327.
  • Huang X, Margulis CJ, Berne BJ. Dewetting-induced collapse of hydrophobic particles. Proc Natl Acad Sci USA. 2003;100:11953–11958.
  • Giovambattista N, Lopez CF, Rossky PJ, et al. Hydrophobicity of protein surfaces: separating geometry from chemistry. Proc Natl Acad Sci USA. 2008;105:2274–2279.
  • Berne BJ, Weeks JD, Zhou R. Dewetting and hydrophobic interaction in physical and biological systems. Annu Rev Phys Chem. 2009;60:85–103.
  • Miller TF, Vanden-Eijnden E, Chandler D. Solvent coarse-graining and the string method applied to the hydrophobic collapse of a hydrated chain. Proc Natl Acad Sci USA. 2007;104:14559–14564.
  • Mondal J, Morrone JA, Berne B. How hydrophobic drying forces impact the kinetics of molecular recognition. Proc Natl Acad Sci USA. 2013;110:13277–13282.
  • Tanford C. The hydrophobic effect and the organization of living matter. Science. 1978;200:1012–1018.
  • Chandler D. Interfaces and the driving force of hydrophobic assembly. Nature. 2005;437:640–647.
  • Lum K, Chandler D, Weeks JD. Hydrophobicity at small and large length scales. J Phys Chem B. 1999;103:4570–4577.
  • Talanquer V, Oxtoby D. Nucleation in a slit pore. J Chem Phys. 2001;114:2793–2801.
  • Leung K, Luzar A, Bratko D. Dynamics of capillary drying in water. Phys Rev Lett. 2003;90:065502.
  • Allen R, Hansen JP, Melchionna S. Molecular dynamics investigation of water permeation through nanopores. J Chem Phys. 2003;119:3905–3919.
  • Vishnyakov A, Neimark AV. Nucleation of liquid bridges and bubbles in nanoscale capillaries. J Chem Phys. 2003;119:9755–9764.
  • Desgranges C, Delhommelle J. Free energy calculations along entropic pathways. iii. nucleation of capillary bridges and bubbles. J Chem Phys. 2017;146:184104.
  • Husowitz B, Talanquer V. Nucleation in cylindrical capillaries. J Chem Phys. 2004;121:8021–8028.
  • Sharma S, Debenedetti PG. Evaporation rate of water in hydrophobic confinement. Proc Natl Acad Sci USA. 2012;109:4365–4370.
  • Remsing RC, Xi E, Vembanur S, et al. Pathways to dewetting in hydrophobic confinement. Proc Natl Acad Sci USA. 2015;112:8181–8186.
  • Tinti A, Giacomello A, Grosu Y, et al. Intrusion and extrusion of water in hydrophobic nanopores. Proc Natl Acad Sci USA. 2017;114:E10266–E10273.
  • Guillemot L, Biben T, Galarneau A, et al. Activated drying in hydrophobic nanopores and the line tension of water. Proc Natl Acad Sci USA. 2012;109:19557–19562.
  • Giacomello A, Schimmele L, Dietrich S, et al. Perpetual superhydrophobicity. Soft Matter. 2016;12:8927–8934.
  • Prakash S, Xi E, Patel AJ. Spontaneous recovery of superhydrophobicity on nanotextured surfaces. Proc Natl Acad Sci USA. 2016;113:5508–5513.
  • Li Y, Quéré D, Lv C, et al. Monostable superrepellent materials. Proc Natl Acad Sci USA. 2017 mar;114:3387–3392.
  • Lisi E, Amabili M, Meloni S, et al. Self-recovery superhydrophobic surfaces: modular design. ACS Nano. 2018;12:359–367.
  • Giacomello A, Schimmele L, Dietrich S, et al. Recovering superhydrophobicity in nanoscale and macroscale surface textures. Soft Matter. 2019;15:7462–7471.
  • Hille B. Ionic channels of excitable membranes. Second edition. Sunderland, Massachusetts, USA: Sinauer Associates, Inc.; 1991.
  • Beckstein O, Biggin PC, Sansom MS. A hydrophobic gating mechanism for nanopores. J Phys Chem B. 2001;105:12902–12905.
  • Beckstein O, Sansom MS. Liquid–vapor oscillations of water in hydrophobic nanopores. Proc Natl Acad Sci USA. 2003;100:7063–7068.
  • Anishkin A, Sukharev S. Water dynamics and dewetting transitions in the small mechanosensitive channel MscS. Biophys J. 2004;86:2883–2895.
  • Roth R, Gillespie D, Nonner W, et al. Bubbles, gating, and anesthetics in ion channels. Biophys J. 2008;94:4282–4298.
  • Anishkin A, Akitake B, Kamaraju K, et al. Hydration properties of mechanosensitive channel pores define the energetics of gating. J Phys: Condens Matter. 2010;22:454120.
  • Zhu F, Hummer G. Drying transition in the hydrophobic gate of the GLIC channel blocks ion conduction. Biophys J. 2012;103:219–227.
  • Aryal P, Sansom MS, Tucker SJ. Hydrophobic gating in ion channels. J Mol Biol. 2015;427:121–130.
  • Rao S, Lynch CI, Klesse G, et al. Water and hydrophobic gates in ion channels and nanopores. Faraday Discuss. 2018;209:231–247.
  • Heimburg T. Lipid ion channels. Biophys Chem. 2010;150:2–22.
  • Blicher A, Heimburg T. Voltage-gated lipid ion channels. PLoS One. 2013;8:e65707.
  • Bayley H, Braha O, Kasianowicz J, et al. Designed protein pores as components for biosensors. US Patent App. 10/946,802. 2005.
  • Stoddart D, Heron AJ, Mikhailova E, et al. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc Natl Acad Sci USA. 2009;106:7702–7707.
  • Huang G, Voet A, Maglia G. Frac nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 dalton resolution. Nat Comm. 2019;10:1–10.
  • Lefevre B, Saugey A, Barrat JL, et al. Intrusion and extrusion of water in hydrophobic mesopores. J Chem Phys. 2004;120:4927–4938.
  • Han A, Kong X, Qiao Y. Pressure induced liquid infiltration in nanopores. J Appl Phys. 2006;100:014308.
  • Smirnov S, Vlassiouk I, Takmakov P, et al. Water confinement in hydrophobic nanopores. pressure-induced wetting and drying. ACS Nano. 2010;4:5069–5075.
  • Amabili M, Grosu Y, Giacomello A, et al. Pore morphology determines spontaneous liquid extrusion from nanopores. ACS Nano. 2019;13:1728–1738.
  • Eroshenko V, Regis RC, Soulard M, et al. Energetics: a new field of applications for hydrophobic zeolites. J Am Chem Soc. 2001;123:8129–8130.
  • Eroshenko V, Regis RC, Soulard M, et al. The heterogeneous systems ‘water-hydrophobic zeolites’: new molecular springs. C R Phys. 2002;3:111–119.
  • Nagashima G, Levine EV, Hoogerheide DP, et al. Superheating and homogeneous single bubble nucleation in a solid-state nanopore. Phys Rev Lett. 2014;113:024506.
  • Eroshenko V. Heterogeneous structure for accumulating or dissipating energy, methods of using such a structure and associated devices. US Patent 6,052,992. 2000.
  • Eroshenko V, Piatiletov I, Coiffard L, et al. A new paradigm of mechanical energy dissipation. part 2: experimental investigation and effectiveness of a novel car damper. Proc Inst Mech Eng Part D. 2007;221:301–312.
  • Iwatsubo T, Suciu CV, Ikenagao M, et al. Dynamic characteristics of a new damping element based on surface extension principle in nanopore. J Sound Vib. 2007;308:579–590.
  • Rauscher M, Dietrich S. Wetting phenomena in nanofluidics. Annu Rev Mater Res. 2008;38:143–172.
  • Sachs F, Qin F. Gated, ion-selective channels observed with patch pipettes in the absence of membranes: novel properties of a gigaseal. Biophys J. 1993;65:1101–1107.
  • Smeets RM, Keyser U, Wu M, et al. Nanobubbles in solid-state nanopores. Phys Rev Lett. 2006;97:088101.
  • Smeets RM, Keyser UF, Dekker NH, et al. Noise in solid-state nanopores. Proc Natl Acad Sci USA. 2008;105:417–421.
  • Smirnov SN, Vlassiouk IV, Lavrik NV. Voltage-gated hydrophobic nanopores. ACS Nano. 2011;5:7453–7461.
  • Polster JW, Acar ET, Aydin F, et al. Gating of hydrophobic nanopores with large anions. ACS Nano. 2020;14:4306–4315.
  • Powell MR, Cleary L, Davenport M, et al. Electric-field-induced wetting and dewetting in single hydrophobic nanopores. Nat Nanotech. 2011;6:798.
  • Marion S, Macha M, Davis SJ, et al. Wetting of nanopores probed with pressure. arXiv. 2019;1911.05229v2. https://arxiv.org/abs/1911.05229v2.
  • Lee J, Karnik R. Desalination of water by vapor-phase transport through hydrophobic nanopores. J Appl Phys. 2010;108:044315.
  • Lee J, Laoui T, Karnik R. Nanofluidic transport governed by the liquid/vapour interface. Nat Nanotechnol. 2014;9:317–323.
  • Duan C, Karnik R, Lu MC, et al. Evaporation-induced cavitation in nanofluidic channels. Proc Natl Acad Sci USA. 2012;109:3688–3693.
  • Hummer G, Rasaiah JC, Noworyta JP. Water conduction through the hydrophobic channel of a carbon nanotube. Nature. 2001;414:188–190.
  • Checco A, Ocko BM, Rahman A, et al. Collapse and reversibility of the superhydrophobic state on nanotextured surfaces. Phys Rev Lett. 2014;112:216101.
  • Helmy R, Kazakevich Y, Ni C, et al. Wetting in hydrophobic nanochannels: a challenge of classical capillarity. J Am Chem Soc. 2005;127:12446–12447.
  • Doyle DA, Cabral JM, Pfuetzner RA, et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998;280:69–77.
  • Hamill OP, Marty A, Neher E, et al. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archiv. 1981;391:85–100.
  • Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature. 1976;260:799–802.
  • Dror RO, Dirks RM, Grossman J, et al. Biomolecular simulation: a computational microscope for molecular biology. Annu Rev Biophys. 2012;41:429–452.
  • Evans R, Marconi UMB, Tarazona P. Fluids in narrow pores: adsorption, capillary condensation, and critical points. J Chem Phys. 1986;84:2376–2399.
  • Dietrich S. Wetting phenomena. In: Domb C, Lebowitz JL, editors. Phase transitions and critical phenomena. Vol. 12, Chapter 1. London: Academic Press; 1988. p. 1–218.
  • Rascón C, Parry A. Geometry-dominated fluid adsorption on sculpted solid substrates. Nature. 2000;407:986.
  • Restagno F, Bocquet L, Biben T. Metastability and nucleation in capillary condensation. Phys Rev Lett. 2000;84:2433.
  • Yatsyshin P, Savva N, Kalliadasis S. Wetting of prototypical one-and two-dimensional systems: thermodynamics and density functional theory. J Chem Phys. 2015;142:034708.
  • Lafuma A, Quéré D. Superhydrophobic states. Nat Mater. 2003;2:457–460.
  • Quéré D. Wetting and roughness. Annu Rev Mater Res. 2008;38:71–99.
  • Evans R. Fluids adsorbed in narrow pores: phase equilibria and structure. J Phys: Condens Matter. 1990;2:8989–9007.
  • König PM, Roth R, Mecke KR. Morphological thermodynamics of fluids: shape dependence of free energies. Phys Rev Lett. 2004;93: 160601–1–4.
  • Hardwiger H. Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Berlin, Göttingen, Heidelberg: Springer; 1957.
  • Roth R, Kroll KM. Capillary evaporation in pores. J Phys: Condens Matter. 2006;18:6517–6530.
  • Peyser A, Gillespie D, Roth R, et al. Domain and interdomain energetics underlying gating in shaker-type KV channels. Biophys J. 2014;107:1841–1852.
  • Gußmann F, Roth R. Bubble gating in biological ion channels: a density functional theory study. Phys Rev E. 2017;95: 062407–1–7.
  • Thompson AN, Posson DJ, Parsa PV, et al. Molecular mechanism of pH sensing in KcsA potassium channels. Proc Natl Acad Sci USA. 2008;105:6900–6905.
  • Rowlinson JS, Widom B. Molecular theory of capillarity. Oxford: Oxford University Press; 1982.
  • Schimmele L, Napiórkowski M, Dietrich S. Conceptual aspects of line tensions. J Chem Phys. 2007;127:164715.
  • Skripov VP. Metastable liquids. New York: Halsted Press; 1972.
  • Volmer, M. Kinetik der Phasenbildung. Dresden und Leipzig: Steinkopff. In: Steinkopff T, editor. Kinetik der Phasenbildung; 1939.
  • Caupin F, Herbert E. Cavitation in water: a review. C R Phys. 2006;7:1000–1017.
  • Meloni S, Giacomello A, Casciola CM. Focus article: theoretical aspects of vapor/gas nucleation at structured surfaces. J Chem Phys. 2016;145:211802.
  • Giacomello A, Chinappi M, Meloni S, et al. Metastable wetting on superhydrophobic surfaces: continuum and atomistic views of the Cassie-Baxter–Wenzel transition. Phys Rev Lett. 2012;109:226102.
  • Giacomello A, Chinappi M, Meloni S, et al. Geometry as a catalyst: how vapor cavities nucleate from defects. Langmuir. 2013;29:14873–14884.
  • Zheng Q, Durben D, Wolf G, et al. Liquids at large negative pressures: water at the homogeneous nucleation limit. Science. 1991;254:829–832.
  • Azouzi MEM, Ramboz C, Lenain JF, et al. A coherent picture of water at extreme negative pressure. Nat Phys. 2013;9:38–41.
  • Atchley AA, Prosperetti A. The crevice model of bubble nucleation. J Acoust Soc Am. 1989;86:1065–1084.
  • Gritti, F, Brousmiche, D, Gilar, M, Walter, TH, Wyndham, K. Kinetic mechanism of water dewetting from hydrophobic stationary phases utilized in liquid chromatography. J Chromatogr A. 2019;1596, 41–53. doi:10.1016/j.chroma.2019.02.051
  • Bakalyar S, Bradley MT, Honganen R. The role of dissolved gases in high-performance liquid chromatography. J Chromatogr A. 1978;158:277–293.
  • Tortora M, Meloni S, Tan BH, et al. The interplay among gas, liquid and solid interactions determines the stability of surface nanobubbles; 2020.
  • Luzar A. Activation barrier scaling for the spontaneous evaporation of confined water. J Phys Chem B. 2004;108:19859–19866.
  • Roth R, Parry AO. Drying in a capped capillary. Mol Phys. 2011;109:1159–1167.
  • Roth R, Parry AO. Geometrical aspects of drying in a capped capillary: a DFT Study. J Phys Soc Jpn. 2012;81:SA009.
  • Rejmer K, Dietrich S, Napiórkowski M. Filling transition for a wedge. Phys Rev E. 1999;60:4027–4042.
  • Grosu Y, Li M, Peng YL, et al. A highly stable nonhysteretic {Cu2(tebpz) MOF+water} molecular spring. ChemPhysChem. 2016;17:3359–3364.
  • Giacomello A, Schimmele L, Dietrich S. Wetting hysteresis induced by nanodefects. Proc Natl Acad Sci USA. 2016;113:E262–E271.
  • Bussonnière A, Liu Q, Tsai PA. Cavitation nuclei regeneration in a water-particle suspension. Phys Rev Lett. 2020;124:034501.
  • Giacomello A, Meloni S, Müller M, et al. Mechanism of the Cassie-Wenzel transition via the atomistic and continuum string methods. J Chem Phys. 2015;142:104701.
  • Amabili M, Meloni S, Giacomello A, et al. Activated wetting of nanostructured surfaces: reaction coordinates, finite size effects, and simulation pitfalls. J Phys Chem B. 2018;122:200–212.
  • Tinti A, Giacomello A, Casciola CM. Vapor nucleation paths in lyophobic nanopores. Eur Phys J E. 2018;41:52.
  • Guillemot L, Galarneau A, Vigier G, et al. New device to measure dynamic intrusion/extrusion cycles of lyophobic heterogeneous systems. Rev Sci Instrum. 2012;83:105105.
  • Michel L Etude macroscopique dynamique et microscopique des systèmes hétérogènes lyophobes [dissertation]. Université Grenoble Alpes; 2019.
  • Weijs JH, Marchand A, Andreotti B, et al. Origin of line tension for a Lennard-Jones nanodroplet. Phys Fluids. 2011;23:022001.
  • Amabili M, Giacomello A, Meloni S, et al. Collapse of superhydrophobicity on nanopillared surfaces. Phy Rev Fluids. 2017;2:034202.
  • Kanduč M. Going beyond the standard line tension: size-dependent contact angles of water nanodroplets. J Chem Phys. 2017;147:174701.
  • Flood E, Boiteux C, Lev B, et al. Atomistic simulations of membrane ion channel conduction, gating, and modulation. Chem Rev. 2019;119:7737–7832.
  • Altabet YE, Haji-Akbari A, Debenedetti PG. Effect of material flexibility on the thermodynamics and kinetics of hydrophobically induced evaporation of water. Proc Natl Acad Sci USA. 2017;114:E2548–E2555.
  • Marchio S, Meloni S, Giacomello A, et al. Wetting and recovery of nano-patterned surfaces beyond the classical picture. Nanoscale. 2019;11:21458–21470.
  • Beckstein O, Tai K, Sansom MS. Not ions alone: barriers to ion permeation in nanopores and channels. J Am Chem Soc. 2004;126:14694–14695.
  • Evans R. The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv Phys. 1979;28:143–200.