1,711
Views
1
CrossRef citations to date
0
Altmetric
Reviews

State-to-state dissociative photoionization of molecular nitrogen: the full story

, ORCID Icon, , ORCID Icon, ORCID Icon, , , & show all
Article: 1831955 | Received 20 May 2020, Accepted 29 Sep 2020, Published online: 23 Oct 2020

References

  • Feldman PD, Sahnow DJ, Kruk JW, et al. High-resolution FUV spectroscopy of the terrestrial day airglow with the far ultraviolet spectroscopic explorer. J Geophys Res Space Phys. 2001;106:8119.
  • Owen TC. On the origin of titan’s atmosphere. Planet Space Sci. 2000;48:747.
  • Strobel DF, Shemansky DE. EUV emission from titans upper atmosphere voyager I encounter. J Geophys Res Space Phys. 1982;87:1361.
  • Dutuit O, Carrasco N, Thissen R, et al. Critical review of N, N+, N2+, N++, and N2++ main production processes and reactions of relevance to titan’s atmosphere. Astrophys J Suppl S. 2013;204:20.
  • Torr DG, Torr MR. Chemistry of the thermosphere and ionosphere. J Atmos Sol-Terr Phy. 1979;41:797.
  • Torr MR, Torr DG. The role of metastable species in the thermosphere. Rev Geo Phys Space Phys. 1982;20:91.
  • Teanby NA, Irwin PGJ, de Kok R, et al. Latitudinal variations of HCN, HC3N and C2N2 in titan’s stratosphere derived from cassini CIRS data. Icarus. 2006;181:243.
  • Krasnopolsky VA. A photochemical model of titans atmosphere and ionosphere. Icarus. 2009;201:226.
  • Peng Z, Gautier T, Carrasco N, et al. Titans atmosphere simulation experiment using continuum UV-VUV synchrotron radiation. J Geophys Res Planets. 2013;118:778.
  • Balucani N. Elementary reactions of N atoms with hydrocarbons: first steps towards the formation of prebiotic N containing molecules in planetary atmospheres. Chem Soc Rev. 2012;41:5473.
  • Knauth DC, Andersson BG, McCandliss SR, et al. The interstellar N2 abundance towards HD 124314 from far-ultraviolet observations. Nature. 2004;429:636.
  • Snow TP. Molecular nitrogen in space. Nature. 2004;429:615.
  • Waite JH Jr., Young DT, Cravens TE, et al. The process of tholin formation in titan’s upper atmosphere. Science. 2007;316:870.
  • Thiemens MH, Chakraborty S, Dominguez G. The physical chemistry of mass-independent isotope effects and their observation in nature. Annu Rev Phys Chem. 2012;63:155–32.
  • Meier RR, Samson JAR, Chung Y, et al. Production of N+ from N2 + hv: effective EUV emission yields from laboratory and dayglow data. Planet Space Sci. 1991;39:1197–1207.
  • Song Y, Gao H, Chang YC, et al. Quantum-state dependence of product branching ratios in vacuum ultraviolet photodissociation of N2. ApJ. 2016;819:23.
  • Meier RR. Ultraviolet spectroscopy and remote sensing of the upper atmosphere. Space Sci Rev. 1991;58:1.
  • Lie-Svendsen Ø, Rees MH, Stamnes K. Helium escape from the Earth’s atmosphere: the charge exchange mechanism revisited. Planet Space Sci. 1992;40:1639–1662.
  • Douglas AE. The near ultraviolet bands of N2+ and the dissociation energies of the N2+ and N2 molecules. Can J Phys. 1952;30:302.
  • Carroll K. The C-X system of N2+. Can J Phys. 1959;37:880.
  • Wankenne H, Momigny J. Monomolecular and collision-induced predissociation in the mass spectrum of N2+. Int J Mass Spectrom Ion Phys. 1971;7:227.
  • Wankenne H, Bolduc E, Marmet P. Ionisation dissociative de N2. Can J Phys. 1975;53:770.
  • Fournier P, Ozenne J-B, Durup J. Vibrational structure of predissociating molecular states: velocity spectrum of N+ fragments from fast N2+ ions. J Chem Phys. 1970;53:4095.
  • Fournier P, van de Runstraat CA, Govers TR, et al. Collision-induced dissociation of 10 keV N2+ ions: evidence for predissociation of the C2Σu+ state. Chem Phys Lett. 1971;9:426.
  • Van de Runstraat CA, de Heer FJ, Govers TR. Excitation and decay of the C2Σu+ state of N2+ in the case of electron impact on N2. Chem Phys. 1974;3:431.
  • Erman P. Direct Measurement of the N2+ C state predissociation probability. Phys Scr. 1976;14:51.
  • Asbrink L, Fridh C. The C state of N2+, studied by photoelectron spectroscopy. Phys Scr. 1974;9:338.
  • Nicolas C, Alcaraz C, Thissen R, et al. Dissociative photoionization of N2 in the 24–32 eV photon energy range. J Phys B: At Mol Opt Phys. 2003;36:2239.
  • Aoto T, Ito K, Hikosaka Y, et al. Inner-valence states of N2+ and the dissociation dynamics studied by threshold photoelectron spectroscopy and configuration interaction calculation. J Chem Phys. 2006;124:234306.
  • Trabattoni A, Klinker M, González-Vázquez J, et al. Mapping the dissociative ionization dynamics of molecular nitrogen with attosecond time resolution. Phys Rev X. 2015;5:041053.
  • Eckstein M, Yang C-H, Kubin M, et al. Dynamics of N2 dissociation upon inner-valence ionization by wavelength-selected XUV pulses. J Phys Chem Lett. 2015;6:419.
  • Govers TR, van de Runstraat CA, de Heer FJ. Isotope effects in the predissociation of the C2Σu+ state of N2+. J Phys B. 1973;6:73.
  • Govers TR, Fehsenfeld FC, Albritton DL, et al. Molecular isotope effects in the thermal-energy charge exchange between He+ and N2. Chem Phys Lett. 1974;26:134.
  • Govers TR, van de Runstraat CA, de Heer FJ. Excitation and decay of the C2Σu+ state of N2+ following collisions of He+ ions with N2 isotopes. Chem Phys. 1975;9:285.
  • Fournier PG, Govers TR, van de Runstraat CA, et al. Translational spectroscopy of the unimolecular dissociation N2+ → N+ + N. J Phys. 1972;33:755.
  • Hrodmarsson HR, Thissen R, Dowek D, et al. Isotope effects in the predissociation of excited states of N2+ produced by photoionization of 14N2 and 15N2 at energies between 24.2 and 25.6 eV. Front Chem. 2019;7:222.
  • Lorquet AJ, Lorquet JC. Isotopic effects in accidental predissociation, The case of the C2Σu+ state of N2+. Chem Phys Lett. 1974;26:138.
  • Lorquet JC, Desouter M. Excited states of gaseous ions. Transition to and predissociation of the C2Σu+ state of N2+. Chem Phys Lett. 1972;16:136.
  • Tellinghuisen J, Albritton DL. Predissociation of the C2Σu+ state of N2+. Chem Phys Lett. 1975;31:91.
  • Roche AL, Lefebvre-Brion H. Some ab initio calculations related to the predissociation of the C2Σu+ state of N2+. Chem Phys Lett. 1975;32:155.
  • Hochlaf M, Chambaud G, Rosmus P. Quartet states in the N2+ radical cation. J Phys B: At Mol Opt Phys. 1997;30:4509.
  • Hochlaf M, Chambaud G, Rosmus P. CORRIGENDUM: quartet states in the N2+ radical cation. J Phys B: At Mol Opt Phys. 1998;31:4059.
  • Paulus B, Pérez-Torres JF, Stemmle C. Time-dependent description of the predissociation of N2+ in the C2Σu+ state. Phys Rev A. 2016;94:053423.
  • Roche AL, Tellinghuisen J. Predissociation and perturbations in the C2∑u+ state of N2+ from interaction with the B2∑u+ state. Mol Phys. 1979;38:129.
  • Werner H-J, Knowles PJ et al.MOLPRO version 2015, a package of ab initio programs. 10/09/2020. Available from: http://www.molpro.net
  • Knowles PJ, Werner H-J. An efficient second-order MC SCF method for long configuration expansions. Chem Phys Lett. 1985;115:259.
  • Werner H-J, Knowles PJ. A second order multiconfiguration SCF procedure with optimum convergence. J Chem Phys. 1985;82:5053.
  • Werner H-J, Knowles PJ. An efficient internally contracted multiconfiguration–reference configuration interaction method. J Chem Phys. 1988;89:5803.
  • Knowles PJ, Werner H-J. An efficient method for the evaluation of coupling coefficients in configuration interaction calculations. Chem Phys Lett. 1988;145:514.
  • Shamasundar KR, Knizia G, Werner H-J. A new internally contracted multi-reference configuration interaction method. J Chem Phys. 2011;135:054101.
  • Dunning TH Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys. 1989;90:1007.
  • Kendall RA, Dunning TH, Harrison RJ. Electron affinities of the first-row atoms revisited: systematic basis sets and wave functions. J Chem Phys. 1992;96:6796.
  • Spelsberg D, Meyer W. Dipole-allowed excited states of N2: potential energy curves, vibrational analysis, and absorption intensities. J Chem Phys. 2001;115:6438.
  • Hochlaf M, Ndome H, Hammoutène D, et al. Valence–Rydberg electronic states of N2: spectroscopy and spin–orbit couplings. J Phys B. 2010;43:245101.
  • Berning A, Schweizer M, Werner H-J, et al. Spin-orbit matrix elements for internally contracted multireference configuration interaction wavefunction. Mol Phys. 2000;98:1823.
  • Tang X, Hou Y, Ng CY, et al. Pulsed field-ionization photoelectron-photoion coincidence study of the process N2+hν → N+ + N+ + e−: bond dissociation energies of N2 and N2+. J Chem Phys. 2005;123:074330.
  • Bruna PJ, Grein F. The X2Σg+ and B2Σu+ states of N2+: hyperfine and nuclear quadrupole coupling constants, electric quadrupole moments, and electron-spin g-factors. A theoretical study. J Mol Spectrosc. 2004;227:67.
  • Thulstrup EW, Andersen A. Configuration interaction studies of bound, low-lying states of N2−, N2, N2+ and N22+. J Phys B. 1975;8:965.
  • Access date: 10/09/2020. Available from: http://Webbook.nist.gov
  • Liu H, Shi D, Wang S, et al. Theoretical spectroscopic calculations on the 25 Λ–S and 66 Ω states of cation in the gas phase including the spin–orbit coupling effect. J Quant Spectrosc Radiat Transf. 2014;147:207.
  • Shi D, Xing W, Sun J, et al. Spectroscopic constants and molecular properties of X2Σg+, A2Πu, B2Σu+ and D2Πg electronic states of the N2+ ion. Comput Theor Chem. 2011;966:44.
  • Scholl TJ, Holt RA, Rosner SD. Fine and Hyperfine Structure in 14N2+: the B2Σ+u-X2Σ+g(0,0) Band. J Mol Spectrosc. 1998;192:424.
  • Cooley JW. An improved eigenvalue corrector formula for solving the schrödinger equation for central fields. Math Comput. 1961;15:363.
  • Le Roy RJ, LEVEL 7.2, Chemical Physics Research Report No. CP-642, U. Waterloo; 2002.
  • Le Roy RJ, BCONT, Chemical Physics Research Report No. CP-329R3, U. Waterloo; 1993.
  • Brites V, Hammoutène D, Hochlaf M. Accurate ab initio spin–orbit predissociation lifetimes of the A states of SH and SH+. J Phys B: At Mol Opt Phys. 2008;41:045101.
  • Langhoff SR, Bauschlicher CW Jr. Theoretical study of the first and second negative systems of N2+. J Chem Phys. 1988;88:329.
  • Richard-Viard M, Delboulbe A, Vervloet M. Experimental study of the dissociation of selected internal energy ions produced in low quantities: application to N2O+ ions in the Franck-Condon gap and to small ionic water clusters. Chem Phys. 1996;209:159.
  • Nahon L, de Oliveira N, Garcia G, et al. DESIRS: a state-of-the-art VUV beamline featuring high resolution and variable polarization for spectroscopy and dichroism at SOLEIL. J Synchrotron Rad. 2012;19:508.
  • Garcia GA, De Miranda BKC, Tia M, et al. DELICIOUS III: A multipurpose double imaging particle coincidence spectrometer for gas phase vacuum ultraviolet photodynamics studies. Rev Sci Instrum. 2013;84:053112.
  • Garcia GA, Nahon L, Powis I. Two-dimensional charged particle image inversion using a polar basis function expansion. Rev Sci Instrum. 2004;75:4989.
  • Baer T, Guyon PM. An historical introduction to threshold photoionization. In: Baer T, Ng CY, Powis I, editors. High resolution laser photoionization and photoelectron studies. Chichester: John Wiley & Sons Ltd; 1995. p. 1.
  • Baltzer P, Larsson M, Karlsson L, et al. Inner-valence states of N2+ studied by uv photoelectron spectroscopy and configuration-interaction calculations. Phys Rev A. 1992;46:5545.
  • Merkt F, Softley TP. Rotationally resolved zero-kinetic-energy photoelectron spectrum of nitrogen. Phys Rev A. 1992;46:302.
  • Yoshii H, Tanaka T, Morioka Y, et al. New N2+ electronic states in the region of 23-28 eV. J Mol Spectrosc. 1997;186:155.
  • Yencha AJ, Ellis K, King GC. High-resolution threshold photoelectron and photoion spectroscopy of molecular nitrogen in the 15.0–52.7 eV photon energy range. J Electron Spectrosc Relat Phenom. 2014;195:160.
  • Poully JC, Schermann JP, Nieuwjaer N, et al. Photoionization of 2-pyridone and 2-hydroxypyridine. Phys Chem Chem Phys. 2010;12:3566.
  • Feit MD, Fleck JA, Steiger A. Solution of the Schrödinger equation by a spectral method. J Comput Phys. 1982;47:412.
  • Alvarellos J, Metiu H. The evolution of the wave function in a curve crossing problem computed by a fast Fourier transform method. J Chem Phys. 1988;88:4957.
  • Balint-Kurti GG, Dixon RN, Marston CC. Time-dependent quantum dynamics of molecular photofragmentation processes. J Chem Soc Faraday Trans. 1990;86:1741.
  • Sodoga K, Loreau J, Lauvergnat D, et al. Photodissociation of the HeH+ ion into excited fragments (n=2,3) by time-dependent methods. Phys Rev A. 2009;80:033417.
  • Jiang P, Chi X, Zhu Q, et al. Strong and selective isotope effect in the vacuum ultraviolet photodissociation branching ratios of carbon monoxide. Nat Commun. 2019;10:3175.
  • Bonnet L, Linguerri R, Hochlaf M, et al. Full-dimensional theory of pair-correlated HNCO photofragmentation. J Phys Chem Lett. 2017;8:2420.