3,155
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Electrical conduction in nanogranular cluster-assembled metallic films

&
Article: 1908847 | Received 25 Jan 2021, Accepted 22 Mar 2021, Published online: 13 Apr 2021

References

  • Papadopoulos L, Porter MA, Daniels KE, et al. Network analysis of particles and grains. J Complex Networks. 2018;6:485.
  • Jaeger HM, Nagel SR, Behringer RP. The physics of granular materials. Phys Today. 1996;49:32.
  • De Gennes PG. Granular matter: a tentative view. Rev. Mod. Phys. 1999;71:S374.
  • Yuan CN, Li YF, Sheng YJ, et al. Dry nanogranular materials. Appl. Phys. Lett. 2011;98(14):144102.
  • Gleiter H. Nanocrystalline materials. Prog. Mater. Sci. 1989;33:223.
  • Abeles B, Sheng P, Coutts MD, et al. Structural and electrical properties of granular metal films. Adv. Phys. 1975;24(3):407.
  • Bursten JR, et al. Nano on reflection. Nat Nanotechnol. 2016;11:828.
  • Jena P, Sun Q. Super atomic clusters: design rules and potential for building blocks of materials. Chem. Rev. 2018;118(11):5755.
  • Tomalia DA, Khanna SN. A systematic framework and nanoperiodic concept for unifying nanoscience: hard/soft nanoelements, superatoms, meta-atoms, new emerging properties, periodic property patterns, and predictive Mendeleev-like nanoperiodic tables. Chem. Rev. 2016;116(4):2705.
  • Luo Z, Castleman AW. Special and general superatoms. Acc. Chem. Res. 2014;47:2931.
  • Benel C, Fischer A, Zimina A, et al. Controlling the structure and magnetic properties of cluster-assembled metallic glasses. Mater Horizons. 2019;6(4):727.
  • Edelstein AS, Cammarata RC, editors. Nanomaterials: synthesis, properties, and applications. London: Institute of Physics; 1996.
  • Tschopp MA, Murdoch HA, Kecskes LJ, et al. “Bulk” nanocrystalline metals: review of the current state of the art and future opportunities for copper and copper alloys. JOM. 2014;66(6):1000.
  • Schiøtz J, Di Tolla FD, Jacobsen KW. Softening of nanocrystalline metals at very small grain sizes. Nature. 1998;391:561.
  • Kumar KS, Van Swygenhoven H, Suresh S. Mechanical behavior of nanocrystalline metals and alloys11The golden jubilee issue—selected topics in materials science and engineering: past, present and future, edited by S. Suresh. Acta Mater. 2003;51(19):5743.
  • Naik SN, Walley SM. The hall–petch and inverse hall–petch relations and the hardness of nanocrystalline metals. J. Mater. Sci. 2020;55(7):2661.
  • Benel C, Reisinger T, Kruk R, et al. Cluster-assembled nanocomposites: functional properties by design. Adv. Mater. 2019;31(26):1806634.
  • Faupel F, Zaporojtchenko V, Strunskus T, et al. Metal-polymer nanocomposites for functional applications. Adv. Eng. Mater. 2010;12:1177.
  • Beloborodov IS, Lopatin AV, Vinokur VM, et al. Granular electronic systems. Rev. Mod. Phys. 2007;79(2):469.
  • Ambrosetti G, Grimaldi C, Balberg I, et al. Solution of the tunneling-percolation problem in the nanocomposite regime. Phys. Rev. B - Condens. Matter Mater. Phys. 2010;81(15):1.
  • Vinyas M, Athul SJ, Harursampath D, et al. A comprehensive review on analysis of nanocomposites: from manufacturing to properties characterization. Mater Res Express. 2019;6(9):092002.
  • Homaeigohar S, Elbahri M. Switchable plasmonic nanocomposites. Adv. Opt. Mater. 2019;7:1801101.
  • Milani P, Sowwan M, editors. Cluster beam deposition of functional nanomaterials and devices. Amsterdam: Elsevier; 2019.
  • Huttel Y, editor. Gas-phase synthesis of nanoparticles. Weinheim: VCH; 2017.
  • Milani P, Iannotta S. Cluster beam synthesis of nanostructured materials. In: Springer series in cluster physics Series Editor name: Prof. A. W. Castleman (Editor in Chief), Department of Chemistry , The Pennsylvania State University. Berlin: Springer; 1999.
  • Benetti G, Caddeo C, Melis C, et al. Bottom-up mechanical nanometrology of granular Ag nanoparticles thin films. J Phys Chem C. 2017;121:22434.
  • Piazzoni C, Buttery M, Hampson MR, et al. Tribological coatings for complex mechanical elements produced by supersonic cluster beam deposition of metal dichalcogenide nanoparticles. J. Phys. D. Appl. Phys. 2015;48(26):265302.
  • Borghi F, Milani M, Bettini LG, et al. Quantitative characterization of the interfacial morphology and bulk porosity of nanoporous cluster-assembled carbon thin films. Appl. Surf. Sci. 2019;479:395.
  • Borghi F, Sogne E, Lenardi C, et al. Cluster-assembled cubic zirconia films with tunable and stable nanoscale morphology against thermal annealing. J. Appl. Phys. 2016;120(5):055302.
  • Goulas A, Van Ommen JR. Scalable production of nanostructured particles using atomic layer deposition. KONA Powder Part. J. 2014;31:234.
  • Schulte C, Rodighiero S, Cappelluti MA, et al. Conversion of nanoscale topographical information of cluster-assembled zirconia surfaces into mechanotransductive events promotes neuronal differentiation. J Nanobiotechnology. (2016);14(1):1. .
  • Borghi F, Podestà A, Piazzoni C, et al. Growth mechanism of cluster-assembled surfaces: from submonolayer to thin-film regime. Phys. Rev. Appl. 2018;9:044016.
  • Bisio F, Palombo M, Prato M, et al. Optical properties of cluster-assembled nanoporous gold films. Phys. Rev. B - Condens. Matter Mater. Phys. 2009;80(20):205428.
  • Jensen P. Growth of nanostructures by cluster deposition: experiments and simple models. Rev. Mod. Phys. 1999;71(5):1695.
  • Sondheimer EH. The mean free path of electrons in metals. Adv. Phys. 1952;1:1.
  • Mayadas AF, Shatzkes M. Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces. Phys Rev B. 1970;1(4):1382.
  • Kirkpatrick S. Percolation and conduction. Rev. Mod. Phys. 1973;54:574.
  • Mukherjee A, Ankit K, Selzer M, et al. Electromigration-induced surface drift and slit propagation in polycrystalline interconnects: insights from phase-field simulations. Phys. Rev. Appl. 2018;9:44004.
  • Balberg I, Azulay D, Toker D, et al. Percolation and tunneling in composite materials. Int J Mod Phys B. 2004;18:2091.
  • Munoz RC, Arenas C. Size effects and charge transport in metals: quantum theory of the resistivity of nanometric metallic structures arising from electron scattering by grain boundaries and by rough surfaces. Appl. Phys. Rev. 2017;4:011102.
  • Valencia D, Wilson E, Jiang Z, et al. Grain-boundary resistance in copper interconnects: from an atomistic model to a neural network. Phys. Rev. Appl. 2018;9(4):044005.
  • Mirigliano M, Borghi F, Podestà A, et al. Non-ohmic behavior and resistive switching of Au cluster-assembled films beyond the percolation threshold. Nanoscale Adv. 2019;1(8):3119.
  • Mirigliano M, Decastri D, Pullia A, et al. Complex electrical spiking activity in resistive switching nanostructured Au two-terminal devices. Nanotechnology. 2020;31(23):234001.
  • Mirigliano M, Radice S, Falqui A, et al. Anomalous electrical conduction and negative temperature coefficient of resistance in nanostructured gold resistive switching films. Sci. Rep. 2020;10(1):1.
  • Minnai C, Mirigliano M, Brown SA, et al. The nanocoherer: an electrically and mechanically resettableresistive switching device based on gold clusters assembled onpaper. Nano Futur. 2018;2:1.
  • Minnai C, Bellacicca A, Brown SA, et al. Facile fabrication of complex networks of memristive devices. Sci. Rep. 2017;7(1):1.
  • Haberland H, Insepov Z, Moseler M. Molecular-dynamics simulation of thin-film growth by energetic cluster impact. Phys Rev B. 1995;51(16):11061.
  • Strobel R, Pratsinis SE. Flame aerosol synthesis of smart nanostructured materials. J. Mater. Chem. 2007;17(45):4743.
  • Wegner K, Piseri P, Tafreshi HV, et al. Cluster beam deposition: a tool for nanoscale science and technology. J. Phys. D.: Appl. Phys. 2006;39:R439.
  • Piseri P, Tafreshi HV, Milani P. Manipulation of nanoparticles in supersonic beams for the production of nanostructured materials. Curr. Opin. Solid State Mater. Sci. 2004;8:195.
  • Palmer RE, Cai R, Vernieres J. Synthesis without solvents: the cluster (Nanoparticle) beam route to catalysts and sensors. Acc. Chem. Res. 2018;51(9):2296.
  • Haberland H, Karrais M, Mall M, et al. Thin films from energetic cluster impact: a feasibility study. J Vac Sci Technol. 1992;10:3266. [ A Vacuum, Surfaces, Film].
  • Kousal J, Shelemin A, Schwartzkopf M, et al. Magnetron-sputtered copper nanoparticles: lost in gas aggregation and found by in situ X-ray scattering. Nanoscale. 2018;10(38):18275. .
  • Zanardi A, Bandiera D, Bertolini F, et al. Miniaturized FISH for screening of onco-hematological malignancies. Biotechniques. 2010;49(1):497.
  • Santaniello T, Milani P. Cluster beam deposition of functional nanomaterials and devices. In: Elsevier. Vol. 15. 2020. p. 313,  Paolo Milani, Mukhles Sowwan. Elsevier .
  • Barborini E, Piseri P, Milani P. A pulsed microplasma source of high intensity supersonic carbon cluster beams. J. Phys. D. Appl. Phys. 1999;32(21):L105.
  • Piseri P, Podestà A, Barborini E, et al. Production and characterization of highly intense and collimated cluster beams by inertial focusing in supersonic expansions. Rev. Sci. Instrum. 2001;72:2261.
  • Tafreshi HV, Piseri P, Benedek G, et al. The role of gas dynamics in operation conditions of a pulsed microplasma cluster source for nanostructured thin films deposition. J. Nanosci. Nanotechnol. 2006;6:1140.
  • Tafreshi HV, Benedek G, Piseri P, et al. A simple nozzle configuration for the production of low divergence supersonic cluster beam by aerodynamic focusing. Aerosol Sci. Technol. 2002;36(5):593.
  • E Barborini, S Vinati, M Leccardi, P Repetto, G Bertolini, O Rorato, L Lorenzelli, M Decarli, V Guarnieri, C Ducatiand P Milani. Batch fabrication of metal oxide sensors on micro-hotplates. J. Micromech. Microeng. 2008;18:055015.
  • Marelli M, Divitini G, Collini C, et al. Flexible and biocompatible microelectrode arrays fabricated by supersonic cluster beam deposition on SU-8. J. Micromech. Microeng. 2011;21(4):045013. .
  • Reiss G, Vancea J, Hoffmann H. Grain-boundary resistance in polycrystalline metals. Phys. Rev. Lett. 1986;56:2100.
  • Josell D, Brongersma SH, Tokei Z. Size-dependent resistivity in nanoscale interconnects. Annu. Rev. Mater. Res. 2009;39:231.
  • Durkan C, Welland M. Size effects in the electrical resistivity of polycrystalline nanowires. Phys. Rev. B - Condens. Matter Mater. Phys. 2000;61(20):14215.
  • Steinhögl W, Schindler G, Steinlesberger G, et al. Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller. J. Appl. Phys. 2005;97:023706.
  • Gall D. The search for the most conductive metal for narrow interconnect lines. J Appl Phys. 2020;127(5):050901.
  • Petrov I, Barna PB, Hultman L, et al. Microstructural evolution during film growth. J Vac Sci Technol A. 2003;21(5):S117.
  • Cattani M, Salvadori MC. contribution of the morphological grain sizes to the electrical resistivity of platinum and gold thin films. Surf. Rev. Lett. 2004;11:463.
  • Zhigal’skii GP, Jones BK. The physical properties of thin metal films. London: Taylor & Francis; 2003.
  • Abadias G, Simonot L, Colin JJ, et al. Volmer-Weber growth stages of polycrystalline metal films probed by in situ and real-time optical diagnostics. Appl. Phys. Lett. 2015;107(18):183105.
  • Messier R, Giri AP, Roy RA. Revised structure zone model for thin film physical structure. J Vac Sci Technol A. 1984;2(2):500.
  • Sarakinos K. A review on morphological evolution of thin metal films on weakly-interacting substrates. Thin Solid Films. 2019;688:137312.
  • Barna PB, Adamik M. Fundamental structure forming phenomena of polycrystalline films and the structure zone models. Thin Solid Films. 1998;317:27.
  • Ekinci KL, Valles JM. Formation of polycrystalline structure in metallic films in the early stages of Zone I growth. Acta Mater. 1998;46:4549.
  • Camacho JM, Oliva AI. Surface and grain boundary contributions in the electrical resistivity of metallic nanofilms. Thin Solid Films. 2006;515:1881.
  • Yamamuro S, Sumiyama K, Hihara T, et al. Geometrical and electrical percolation in nanometre-sized Co-cluster assemblies. J Phys Condens Matter. 1999;11(16):3247.
  • Barborini E, Corbelli G, Bertolini G, et al. The influence of nanoscale morphology on the resistivity of cluster-assembled nanostructured metallic thin films. New J. Phys. 2010;12:073001.
  • Bouwen W, Kunnen E, Temst K, et al. Characterization of granular Ag films grown by low-energy cluster beam deposition. Thin Solid Films. 1999;354(1–2):87.
  • Pauwels B, Van Tendeloo G, Bouwen W, et al. Low-energy-deposited Au clusters investigated by high-resolution electron microscopy and molecular dynamics simulations. Phys. Rev. B - Condens. Matter Mater. Phys. 2000;62:10383.
  • Bardotti L, Prével B, Treilleux M, et al. Deposition of preformed gold clusters on HOPG and gold substrates: influence of the substrate on the thin film morphology. Appl. Surf. Sci. 2000;164:52.
  • Fuchs G, Montadon C, Treilleux M, et al. Low-energy Bi cluster beam deposition. J. Phys. D. Appl. Phys. 1993;26:1114.
  • Schmelzer J, Brown SA, Wurl A, et al. Finite-size effects in the conductivity of cluster assembled nanostructures. Phys. Rev. Lett. 2002;88:226802.
  • Dunbar ADF, Partridge JG, Schulze M, et al. Morphological differences between Bi, Ag and Sb nano-particles and how they affect the percolation of current through nano-particle networks. Eur Phys J D. 2006;39:415.
  • Sattar A, Fostner S, Brown SA. Quantized conductance and switching in percolating nanoparticle films. Phys. Rev. Lett. 2013;111:136808.
  • Yoon B, Akulin VM, Cahuzac P, et al. Morphology control of the supported islands grown from soft-landed clusters. Surf. Sci. 1999;443(1–2):76.
  • Mélinon P, Fuchs G, Cabaud B, et al. Low-energy cluster beam deposition: do you need it?. J Phys I. 1993;3:1585.
  • Borghi F, Mirigliano M, Milani P, et al. Toward a science campus in Milan. 2018. p. 67. Gewerbestrasse.
  • Podestà A, Borghi F, Indrieri M, et al. Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition. J. Appl. Phys. 2015;118:234309.
  • Bardotti L, Prével B, Mélinon P, et al. Deposition of AuN clusters on Au(111) surfaces. II. Experimental results and comparison with simulations. Phys. Rev. B - Condens. Matter Mater. Phys. 2000;62(4):2835.
  • Me P, Pre B, Hou Q, et al. Deposition of Au N clusters on Au(111) surfaces. I. Atomic-scale modeling. Phys Rev B. 2000;62:2825.
  • Stauffer D, Aharony A. Introduction to percolation theory. London: Taylor & Francis; 2003.
  • Balberg I. Tunnelling and percolation in lattices and the continuum. J. Phys. D. Appl. Phys. 2009;42(6):064003.
  • Saberi AA. Recent advances in percolation theory and its applications. Phys Rep. 2015;578:1.
  • Maaroof AI, Evans BL. Onset of electrical conduction in Pt and Ni films. J. Appl. Phys. 1994;76:1047.
  • Yajadda MMA, Müller KH, Ostrikov K. Effect of Coulomb blockade, gold resistance, and thermal expansion on the electrical resistance of ultrathin gold films. Phys Rev B. 2011;84:235431.
  • Muller KH, Yajadda MA. Electron transport in discontinuous gold films and the effect of Coulomb blockade and percolation. J. Appl. Phys. 2012;111(12):123705.
  • Fuchs K. The conductivity of thin metallic films according to the electron theory of metals. Math. Proc. Cambridge Philos. Soc. 1937;34(1):100.
  • Lutzer B, Bethge O, Zimmermann C, et al. J Vac Sci Technol B Nanotechnol Microelectron Mater Process Meas Phenom. In situ resistance measurements during physical vapor deposition of ultrathin metal films on Si(111) at room temperature. 2017;35:051802.
  • Borziak PG, Kulyupin SA, Nepuko SA, et al. Electrical conductivity and electron emission from discontinuous metal films of homogeneous structure. Thin Solid Films. 1981;76(4):359.
  • Vancea J, Hoffmann H, Kastner K. Mean free path and effective density of conduction electrons in polycrystalline metal films. Thin Solid Films. 1984;121:201.
  • Namba Y. Resistivity and temperature coefficient of thin metal films with rough surface. Jpn. J. Appl. Phys. 1970;9:1326.
  • Vancea J, Reiss G, Hoffmann H. Mean-free-path concept in polycrystalline metals. Low-temperature resistance and its temperature dependence in nanostructured silver. Phys Rev B. 1987;35(12):6435.
  • Qin XY, Zhang W, Zhang LD, et al. Phys Rev B. 1997;56:596.
  • Arnason SB, Herschfield SP, Hebard AF. Bad metals made with good-metal components. Phys. Rev. Lett. 1998;81:3936.
  • Mooij JH. Electrical conduction in concentrated disordered transition metal alloys. Phys Status Solidi. 1973;17(2):521.
  • Anderson PW, Abrahams E, Ramakrishnan TV. Possible explanation of nonlinear conductivity in thin-film metal wires. Phys. Rev. Lett. 1979;43:718.
  • Last BJ, Thouless DJ. Percolation theory and electrical conductivity. Phys. Rev. Lett. 1971;27(25):1719.
  • Melinon P, Jensen P, Hu JX, et al. Comparison of molecular and cluster deposition: evidence of different percolation processes. Phys Rev B. 1991;44(22):12562.
  • Mallinson JB, Shirai S, Acharya SK, et al. Avalanches and criticality in self-organized nanoscale networks. Sci. Adv. 2019;5:1.
  • Fostner S, Brown SA. Neuromorphic behavior in percolating nanoparticle films. Phys Rev E. 2015;92(5):052134.
  • Barabási A-L, Stanley HE. Fractal concepts in surface growth. Cambridge: CAMBRIDGE University Press; 1995.
  • Nasiri N, Elmøe TD, Liu Y, et al. Self-assembly dynamics and accumulation mechanisms of ultra-fine nanoparticles. Nanoscale. 2015;7(21):9859.
  • Andersson T. The electrical properties of ultrathin gold films during and after their growth on glass. J. Phys. D. Appl. Phys. 1976;9:973.
  • Acha C. Graphical analysis of current-voltage characteristics in memristive interfaces. J. Appl. Phys. 2017;121:134502.
  • Burr T, Seraphin A, Werwa E, et al. Carrier transport in thin films of silicon nanoparticles. Phys. Rev. B - Condens. Matter Mater. Phys. 1997;56(8):4818.
  • Chen W, Ahmed H, Nakazoto K. Coulomb blockade at 77 K in nanoscale metallic islands in a lateral nanostructure. Appl. Phys. Lett. 1995;66(24):3383.
  • Aguilar M, Oliva AI, Quintana P. The effect of electrical current (DC) on gold thin films. Surf. Sci. 1998;409:501.
  • Bo R, Nasiri N, Chen H, et al. Low-voltage high-performance UV photodetectors: an interplay between grain boundaries and Debye length. ACS Appl Mater Interfaces. 2017;9(3):2606.
  • Durkan C, Welland ME, Welland ME. Analysis of failure mechanisms in electrically stressed Au nanowires. J Appl Phys. 1999;86(3):1280.
  • Halbritter A, Csonka S, Kolesnychenko OY, et al. Connective neck evolution and conductance steps in hot point contacts. Physical Review B. 2002;65(4):454131.
  • Milano G, Pedretti G, Fretto M, et al. Brain-inspired structural plasticity through reweighting and rewiring in multi-terminal self-organizing memristive nanowire networks. Anomalous electrical conduction and negative temperature coefficient of resistance in nanostructured gold resistive switching films. Adv. Intell. Syst. 2020;2(8):2000096.
  • Ciuchi S, Di Sante D, Dobrosavljević V, et al. Disordered electronic systems. npj Quantum Mater. 2018;3:1.
  • Lee PA, Ramakrishnan TV. Rev Mod Phys. 1985;57:287.
  • Zabet-khosousi A, Trudeau P, Suganuma Y, et al. Metal to insulator transition in films of molecularly linked gold nanoparticles. Phys. Rev. Lett. 2006;96(15):156403.
  • Jiang C-W, Ni I-C, Tzeng S-D, et al. Anderson localization in strongly coupled gold-nanoparticle assemblies near the metal–insulator transition. Appl. Phys. Lett. 2012;101:083105.
  • Yajadda MMA, Levchenko I, Ostrikov K. Gold nanoresistors with near-constant resistivity in the cryogenic-to-room temperature range. Appl. Phys. Lett. 2011;110(2):023303.
  • Shklovskii BI, Éfros AL. Percolation theory and conductivity of strongly inhomogeneous media. Uspekhi Fiz. Nauk. 1975;117:401.
  • Efros AL, Shklovskii BI. Critical behaviour of conductivity and dielectric constant near the metal-non-metal transition threshold. Phys Status Solidi. 1976;76:475.
  • Bose SK, Shirai S, Mallinson JB, et al. Synaptic dynamics in complex self-assembled nanoparticle networks. Faraday Discuss. 2019;213:471.
  • Bowman M, Anaya A, Korotkov AL, et al. Localization and capacitance fluctuations in disordered Au nanojunctions. Phys Rev B. 2004;69:205405.
  • Hoffman-Vogel R. Electromigration and the structure of metallic nanocontacts. Appl. Phys. Rev. 2017;4:031302.
  • Kim T, Zhang X, Nicholson DM, et al. Large discrete resistance jump at grain boundary in copper Nanowire. Nano Lett. 2010;10(8):3096.
  • Anaya A, Korotkov AL, Bowman M, et al. Nanometer-scale metallic grains connected with atomic-scale conductors. J Appl Phys. 2003;93(6):3501.
  • Manning HG, Niosi F, Da Rocha CG, et al. Emergence of winner-takes-all connectivity paths in random nanowire networks. Nat. Commun. (2018);9:1.
  • Nirmalraj PN, Bellew AT, Bell AP, et al. Manipulating connectivity and electrical conductivity in metallic nanowire networks. Nano Lett. 2012;12:5966.
  • Johnson SL, Sundararajan A, Hunley DP, et al. Memristive switching of single-component metallic nanowires. Nanotechnology. 2010;21(12):125204.