4,398
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Membrane models for molecular simulations of peripheral membrane proteins

, ORCID Icon, &
Article: 1932589 | Received 30 Nov 2020, Accepted 14 May 2021, Published online: 01 Jul 2021

References

  • Johnson JE, Cornell RB. Amphitropic proteins: regulation by reversible membrane interactions. Mol Membr Biol. 1999;16:217–35.
  • Weber DK, Yao S, Rojko N, et al. Characterization of the lipid-binding site of equinatoxin II by NMR and molecular dynamics simulation. Biophys J. 2015;108:1987–1996. 10.1016/j.bpj.2015.03.024
  • Grauffel C, Yang B, He T, et al. Cation-π interactions as lipid-specific anchors for phosphatidylinositol-specific phospholipase C. J Am Chem Soc. 2013;135:5740–5750.
  • Gilbert GE, Kaufman RJ, Arena AA, et al. Four hydrophobic amino acids of the factor VIII C2 domain are constituents of both the membrane-binding and von Willebrand factor-binding motifs. J Biol Chem. 2002;277:6374–6381.
  • Gamsjaeger R, Johs A, Gries A, et al. Membrane binding of β2-glycoprotein I can be described by a two-state reaction model: an atomic force microscopy and surface plasmon resonance study. Biochem J. 2005;389:665–673.
  • Fuglebakk E, Reuter N. A model for hydrophobic protrusions on peripheral membrane proteins. PLoS Comput Biol. 2018;14:e1006325.
  • Mulgrew-Nesbitt A, Diraviyam K, Wang J, et al. The role of electrostatics in protein-membrane interactions, Biochim. Biophys. Acta - Mol. Cell Biol. Lipids. 2006;1761:812–826. 10.1016/j.bbalip.2006.07.002
  • Gatta AT, Carlton JG. The ESCRT-machinery: closing holes and expanding roles, Curr. Opin. Cell Biol 2019;59:121–132.
  • Simunovic M, Evergren E, Callan-Jones A, et al. Curving cells inside and out: roles of BAR domain proteins in membrane shaping and its cellular implications, Annu. Rev. Cell Dev. Biol 2019;35:111–129.
  • Hurley JH. Membrane binding domains, Biochim. Biophys. Acta - Mol. Cell Biol. Lipids. 2006;1761:805–811.
  • Lemmon MA. Membrane recognition by phospholipid-binding domains, Nat. Rev. Mol. Cell Biol 2008;9:99–111.
  • Tomasello G, Armenia I, Molla G. The Protein Imager: a full-featured online molecular viewer interface with server-side HQ-rendering capabilities. Bioinformatics. 2020;36:2909–2911.
  • Volwerk JJ, Griffith OH, Filthuth E, et al. Phosphatidylinositol-Specific Phospholipase C from Bacillus cereus at the Lipid-Water Interface: interfacial Binding, Catalysis, and Activation. Biochemistry. 1994;33:3464–3474.
  • Suzuki KGN, Fujiwara TK, Edidin M, et al. Dynamic recruitment of phospholipase Cγ at transiently immobilized GPI-anchored receptor clusters induces IP3-Ca2+ signaling: single-molecule tracking study 2. J Cell Biol. 2007;177:731–742.
  • Lacy MM, Baddeley D, Berro J. Single-molecule turnover dynamics of actin and membrane coat proteins in clathrin-mediated endocytosis. Elife. 2019;8:e52355.
  • Subach FV, Patterson GH, Manley S, et al. Photoactivatable mCherry for high-resolution two-color fluorescence microscopy, Nat. Methods. 2009;6:153–159.
  • Harayama T, Riezman H. Understanding the diversity of membrane lipid composition, Nat. Rev. Mol. Cell Biol 2018;19:281–296.
  • Allen KN, Entova S, Ray LC, et al. Monotopic Membrane Proteins Join the Fold, Trends Biochem. Sci 2019;44:7–20.
  • Tsirigos KD, Govindarajan S, Bassot C, et al. Topology of membrane proteins — predictions, limitations and variations. Curr Opin Struct Biol. 2018;50:9–17. 10.1016/j.sbi.2017.10.003
  • Nomikos M, Mulgrew-Nesbitt A, Pallavi P, et al. Binding of phosphoinositide-specific phospholipase C-ζ (PLC-ζ) to phospholipid membranes: potential role of an unstructured cluster of basic residues. J Biol Chem. 2007;282:16644–16653.
  • Goh BC, Wu H, Rynkiewicz MJ, et al. Elucidation of Lipid Binding Sites on Lung Surfactant Protein A Using X-ray Crystallography, Mutagenesis, and Molecular Dynamics Simulations. Biochemistry. 2016;55:3692–3701.
  • Hirano Y, Gao Y-G, Stephenson DJ, et al. Structural basis of phosphatidylcholine recognition by the c2–domain of cytosolic phospholipase a2α. Elife. 2019;8:e44760. 10.7554/eLife.44760
  • Chon NL, Osterberg JR, Henderson J, et al. Membrane Docking of the Synaptotagmin 7 C2A Domain: computation Reveals Interplay between Electrostatic and Hydrophobic Contributions. Biochemistry. 2015;54:5696–5711.
  • Galassi VV, Villarreal MA, Montich GG. Relevance of the protein macrodipole in the membrane-binding process. Interactions of Fatty-acid Binding Proteins with Cationic Lipid Membranes, PLoS One. 2018;13:pp. 1–15.
  • Galassi VV, Villarreal MA, Posada V, et al. Interactions of the fatty acid-binding protein ReP1-NCXSQ with lipid membranes. Influence of the membrane electric field on binding and orientation, Biochim. Biophys. Acta - Biomembr 2014;1838:910–920.
  • Monje-Galvan V, Klauda JB. Peripheral membrane proteins: tying the knot between experiment and computation, Biochim. Biophys. Acta - Biomembr 2016;1858:1584–1593.
  • Muller MP, Jiang T, Sun C, et al. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev. 2019;119:6086–6161. 10.1021/acs.chemrev.8b00608
  • Whited AM, Johs A. The interactions of peripheral membrane proteins with biological membranes, Chem. Phys. Lipids. 2015;192:51–59.
  • Phillips JC, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26:1781–1802. 10.1002/jcc.20289
  • Klauda JB, Venable RM, Freites JA, et al. Update of the CHARMM All-Atom Additive Force Field for Lipids: validation on Six Lipid Types. J Phys Chem B. 2010;114:7830–7843.
  • Best RB, Zhu X, Shim J, et al. Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone ϕ, ψ and Side-Chain χ1 and χ2 Dihedral Angles. J Chem Theory Comput. 2012;8:3257–3273. 10.1021/ct300400x
  • MacKerell AD, Bashford D, Bellott M, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B. 1998;102:3586–3616. 10.1021/jp973084f
  • Sugita Y, Okamoto Y. Replica-exchange molecular dynamics method for protein folding, Chem. Phys Lett. 1999;314:141–151.
  • Hamelberg D, Mongan J, McCammon JA. Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys. 2004;120:11919–11929.
  • Torrie GM, Valleau JP. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys. 1977;23:187–199.
  • Izrailev S, Stepaniants S, Isralewitz B, et al. Steered Molecular Dynamics, Springer, Berlin. Heidelberg. 1999:39–65. 10.1007/978-3-642-58360-5_2
  • Aksnes H, Goris M, Strømland Ø, et al. Molecular determinants of the N-Terminal acetyltransferase Naa60 anchoring to the Golgi membrane. J Biol Chem. 2017;292:6821–6837. 10.1074/jbc.M116.770362
  • Khan HM, He T, Fuglebakk E, et al. A Role for Weak Electrostatic Interactions in Peripheral Membrane Protein Binding. Biophys J. 2016;110:1367–1378. 10.1016/j.bpj.2016.02.020
  • Klauda JB, Brooks BR, Pastor RW. Dynamical motions of lipids and a finite size effect in simulations of bilayers. J Chem Phys. 2006;125:144710.
  • Schillinger AS, Grauffel C, Khan HM, et al. Two homologous neutrophil serine proteases bind to POPC vesicles with different affinities: when aromatic amino acids matter, Biochim. Biophys. Acta - Biomembr 2014;1838:3191–3202.
  • Leonard AN, Wang E, Monje-Galvan V, et al. Developing and Testing of Lipid Force Fields with Applications to Modeling Cellular Membranes. Chem Rev. 2019;119:6227–6269.
  • Wohlert J, Edholm O. Dynamics in atomistic simulations of phospholipid membranes: nuclear magnetic resonance relaxation rates and lateral diffusion. J Chem Phys. 2006;125:204703.
  • Edholm O, Jähnig F. The structure of a membrane-spanning polypeptide studied by molecular dynamics. Biophys Chem. 1988;30:279–292.
  • Lyubartsev AP, Rabinovich AL. Force Field Development for Lipid Membrane Simulations, Biochim. Biophys. Acta - Biomembr 2016;1858:2483–2497.
  • Van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave, Nat. Rev. Mol. Cell Biol 2008;9:112–124.
  • Corradi V, Sejdiu BI, Mesa-Galloso H, et al. Emerging Diversity in Lipid-Protein Interactions. Chem Rev. 2019;119:5775–5848. 10.1021/acs.chemrev.8b00451
  • Marrink SJ, Corradi V, Souza PCT, et al. Computational Modeling of Realistic Cell Membranes. Chem Rev. 2019;119:6184–6226.
  • Erimban S, Daschakraborty S. Compatibility of advanced water models with a united atom model of lipid in lipid bilayer simulation. J Chem Phys. 2019;151:65104.
  • Ohkubo YZ, Pogorelov TV, Arcario MJ, et al. Accelerating membrane insertion of peripheral proteins with a novel membrane mimetic model. Biophys J. 2012;102:2130–2139.
  • Mackerell AD, Feig M, Brooks CL. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulation. J Comput Chem. 2004;25:1400–1415.
  • Schlenkrich M, Brickmann J, MacKerell AD, et al. An Empirical Potential Energy Function for Phospholipids: criteria for Parameter Optimization and Applications. Biol. Membr 1996;31–81. DOI:https://doi.org/10.1007/978-1-4684-8580-6_2
  • Feller SE, Yin D, Pastor RW, et al. Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: parameterization and comparison with diffraction studies. Biophys J. 1997;73:2269–2279.
  • Feller SE, MacKerell AD. An improved empirical potential energy function for molecular simulations of phospholipids. J Phys Chem B. 2000;104:7510–7515.
  • Klauda JB, Brooks BR, MacKerell AD, et al. An ab initio study on the torsional surface of alkanes and its effect on molecular simulations of alkanes and a DPPC bilayer. J Phys Chem B. 2005;109:5300–5311.
  • Klauda JB, Pastor RW, Brooks BR. Adjacent gauche stabilization in linear alkanes: implications for polymer models and conformational analysis. J Phys Chem B. 2005;109:15684–15686.
  • Khan HM, Grauffel C, Broer R, et al. Improving the Force Field Description of Tyrosine–Choline Cation−π Interactions: QM Investigation of Phenol–N(Me)4+ Interactions. J Chem Theory Comput. 2016;12:5585–5595.
  • Khan HM, MacKerell AD, Reuter N. Cation-π Interactions between Methylated Ammonium Groups and Tryptophan in the CHARMM36 Additive Force Field. J Chem Theory Comput. 2019;15:7–12.
  • Petersen FNR, Jensen MØ, Nielsen CH. Interfacial Tryptophan Residues: a Role for the Cation-π Effect? Biophys J. 2005;89:3985–3996.
  • Hirano Y, Gao YG, Stephenson DJ, et al. Structural basis of phosphatidylcholine recognition by the C2-domain of cytosolic phospholipase A2alpha. Elife. 2019;8:e44760.
  • Case DA, Cheatham TE, Darden T, et al. The Amber biomolecular simulation programs. J Comput Chem. 2005;26:1668–1688. 10.1002/jcc.20290
  • Leong SW, Lim TS, Choong YS. Bioinformatics for Membrane Lipid Simulations: models, Computational Methods, and Web Server Tools. Bioinforma. - Updat. Featur. Appl 2016. DOI:https://doi.org/10.5772/62576
  • Wang J, Wolf RM, Caldwell JW, et al. Development and testing of a general Amber force field. J Comput Chem. 2004;25:1157–1174.
  • Jójárt B, Martinek TA. Performance of the general amber force field in modeling aqueous POPC membrane bilayers. J Comput Chem. 2007;28:2051–2058.
  • Dickson CJ, Rosso L, Betz RM, et al. GAFFlipid: a General Amber Force Field for the accurate molecular dynamics simulation of phospholipid. Soft Matter. 2012;8:9617–9627.
  • Skjevik ÅA, Madej BD, Walker RC, et al. LIPID11: a modular framework for lipid simulations using amber. J Phys Chem B. 2012;116:11124–11136.
  • Dickson CJ, Madej BD, Skjevik ÅA, et al. Lipid14: the amber lipid force field. J. Chem. Theory Comput. 2014;10:865–879.
  • Jämbeck JPM, Lyubartsev AP. Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J Phys Chem B. 2012;116:3164–3179.
  • Jämbeck JPM, Lyubartsev AP. An extension and further validation of an all-atomistic force field for biological membranes. J Chem Theory Comput. 2012;8:2938–2948.
  • Sonne J, Jensen MØ, Hansen FY, et al. Reparameterization of all-atom dipalmitoylphosphatidylcholine lipid parameters enables simulation of fluid bilayers at zero tension. Biophys J. 2007;92:4157–4167.
  • Högberg CJ, Nikitin AM, Lyubartsev AP. Modification of the CHARMM force field for DMPC lipid bilayer, J. Comput. Chem 2008;29:2359–2369.
  • Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc. 1996;118:11225–11236.
  • Siu SWI, Vácha R, Jungwirth P, et al. Biomolecular simulations of membranes: physical properties from different force fields. J Chem Phys. 2008;128:125103.
  • Kulig W, Pasenkiewicz-Gierula M, Róg T. Topologies, structures and parameter files for lipid simulations in GROMACS with the OPLS-aa force field: DPPC, POPC, DOPC, PEPC, and cholesterol. Data Br 2015;5:333–336.
  • Rog T, Koivuniemi A. The biophysical properties of ethanolamine plasmalogens revealed by atomistic molecular dynamics simulations. Biochim Biophys Acta - Biomembr. 2016;1858:97–103.
  • Hermans J, Berendsen HJC, Van Gunsteren WF, et al. A consistent empirical potential for water–protein interactions. Biopolymers. 1984;23:1513–1518.
  • Schuler LD, Daura X, Van Gunsteren WF. An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comput Chem. 2001;22:1205–1218.
  • Chandrasekhar I, Kastenholz M, Lins RD, et al. A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96 45A3 force field. Eur Biophys J. 2003;32:67–77.
  • Schmid N, Eichenberger AP, Choutko A, et al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur. Biophys. J. 2011;40:843–856. 10.1007/s00249-011-0700-9
  • Oostenbrink C, Villa A, Mark AE, et al. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem. 2004;25:1656–1676.
  • Berger O, Edholm O, Jähnig F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J. 1997;72:2002–2013.
  • Chiu SW, Pandit SA, Scott HL, et al. An improved united atom force field for simulation of mixed lipid bilayers. J Phys Chem B. 2009;113:2748–2763.
  • Ryckaert JP, Bellemans A. Molecular dynamics of liquid n-butane near its boiling point. Chem Phys Lett. 1975;30:123–125.
  • Piggot TJ, Piñeiro Á, Khalid S. Molecular dynamics simulations of phosphatidylcholine membranes: a comparative force field study. J Chem Theory Comput. 2012;8:4593–4609.
  • Tieleman DP, MacCallum JL, Ash WL, et al. Membrane protein simulations with a united-atom lipid and all-atom protein model: lipid-protein interactions, side chain transfer free energies and model proteins. J Phys Condens Matter. 2006;18:S1221.
  • Vermaas JV, Baylon JL, Arcario MJ, et al. Efficient Exploration of Membrane-Associated Phenomena at Atomic Resolution. J Membr Biol. 2015;248:563–582. 10.1007/s00232-015-9806-9
  • Arcario MJ, Ohkubo YZ, Tajkhorshid E. Capturing spontaneous partitioning of peripheral proteins using a biphasic membrane-mimetic model. J Phys Chem B. 2011;115:7029–7037.
  • Ohkubo YZ, Tajkhorshid E. Distinct Structural and Adhesive Roles of Ca2+ in Membrane Binding of Blood Coagulation Factors. Structure. 2008;16:72–81.
  • Pogorelov TV, Vermaas JV, Arcario MJ, et al. Partitioning of amino acids into a model membrane: capturing the interface. J Phys Chem B. 2014;118:1481–1492.
  • Baylon JL, Lenov IL, Sligar SG, et al. Characterizing the membrane-bound state of cytochrome P450 3A4: structure, depth of insertion, and orientation. J Am Chem Soc. 2013;135:8542–8551.
  • Guengerich FP. CYTOCHROME P-450 3A4: regulation and Role in Drug Metabolism. Annu Rev Pharmacol Toxicol. 1999;39:1–17.
  • Fisher MB, Paine MF, Strelevitz TJ, et al. The role of hepatic and extrahepatic UDP-glucuronosyltransferases in human drug metabolism*†. Drug Metab Rev. 2001;33:273–297.
  • Lee J, Cheng X, Swails JM, et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J Chem Theory Comput. 2016;12:405–413.
  • Qi Y, Cheng X, Lee J, et al. CHARMM-GUI HMMM Builder for Membrane Simulations with the Highly Mobile Membrane-Mimetic Model. Biophys J. 2015;109:2012–2022. 10.1016/j.bpj.2015.10.008
  • Vidyashankara WISJTK, Iyer G. Software News and Updates Gabedit — a Graphical User Interface for Computational Chemistry Softwares. J Comput Chem. 2012;32:174–182.
  • Kono N, Ohto U, Hiramatsu T, et al. Impaired α-TTP-PIPs interaction underlies familial vitamin E deficiency. Science. 2013;340:1106–1110. 10.1126/science.1233508
  • Rogaski B, Klauda JB. Membrane-binding mechanism of a peripheral membrane protein through microsecond molecular dynamics simulations. J Mol Biol. 2012;423:847–861.
  • Shaw DE, Deneroff MM, Dror RO, et al. Anton, a special-purpose machine for molecular dynamics simulation. Commun ACM. 2008;51:91–97. 10.1145/1364782.1364802
  • Lipp NF, Gautier R, Magdeleine M, et al. An electrostatic switching mechanism to control the lipid transfer activity of Osh6p. Nat Commun. 2019;10:3926. 10.1038/s41467-019-11780-y
  • Koivuniemi A, Vuorela T, Kovanen PT, et al. Lipid exchange mechanism of the cholesteryl ester transfer protein clarified by atomistic and coarse-grained simulations. PLoS Comput Biol. 2012;8:e1002299.
  • Cilpa-Karhu G, Jauhiainen M, Riekkola ML. Atomistic MD simulation reveals the mechanism by which CETP penetrates into HDL enabling lipid transfer from HDL to CETP. J Lipid Res. 2015;56:98–108.
  • Lei D, Rames M, Zhang X, et al. Insights into the tunnel mechanism of cholesteryl ester transfer protein through All-atom molecular dynamics simulations. J Biol Chem. 2016;291:14034–14044.
  • Arita M, Nomura K, Arai H, et al. α-Tocopherol transfer protein stimulates the secretion of α-tocopherol from a cultured liver cell line through a brefeldin A-insensitive pathway. Proc Natl Acad Sci U S A. 1997;94:12437–12441.
  • Lamprakis C, Stocker A, Cascella M. Mechanisms of recognition and binding of α-TTP to the plasma membrane by multi-scale molecular dynamics simulations, Front. Mol. Biosci 2015;2:36.
  • Wirtz KWA. Phospholipid transfer proteins. Annu Rev Biochem. 1991;60:73–99.
  • Jorgensen WL, Tirado-Rives J. The OPLS Potential Functions for Proteins. Energy Minimizations for Crystals of Cyclic Peptides and Crambin. J Am Chem Soc. 1988;110:1657–1666.
  • Grabon A, Orłowski A, Tripathi A, et al. Dynamics and energetics of the mammalian phosphatidylinositol transfer protein phospholipid exchange cycle. J Biol Chem. 2017;292:14438–14455. 10.1074/jbc.M117.791467
  • Orsi M, Essex JW. The ELBA force field for coarse-grain modeling of lipid membranes. PLoS One. 2011;6:1–22.
  • Seo S, Shinoda W, Force SPICA. Field for Lipid Membranes: domain Formation Induced by Cholesterol. J Chem Theory Comput. 2019;15:762–774.
  • Ayton GS, Lyman E, Voth GA. Hierarchical coarse-graining strategy for protein-membrane systems to access mesoscopic scales. Faraday Discuss. 2009;144:347–357.
  • Shinoda W, DeVane R, Klein ML. Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants. Mol. Simul 2007;33:27–36.
  • Barrera EE, Machado MR, Pantano S, et al. Coarse-Grained Phospholipids to Explore Membrane-Protein Dynamics. J Chem Theory Comput. 2019;15:5674–5688.
  • Darré L, Machado MR, Brandner AF, et al. SIRAH: a structurally unbiased coarse-grained force field for proteins with aqueous solvation and long-range electrostatics. J Chem Theory Comput. 2015;11:723–739.
  • Wan CK, Han W, Wu YD. Parameterization of PACE force field for membrane environment and simulation of helical peptides and helix-helix association. J Chem Theory Comput. 2012;8:300–313.
  • Marrink SJ, De Vries AH, Mark AE. Coarse Grained Model for Semiquantitative Lipid Simulations. J Phys Chem B. 2004;108:750–760.
  • Marrink SJ, Risselada HJ, Yefimov S, et al. The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B. 2007;111:7812–7824.
  • Monticelli L, Kandasamy SK, Periole X, et al. The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput. 2008;4:819–834.
  • De Jong DH, Singh G, Bennett WFD, et al. Improved parameters for the martini coarse-grained protein force field. J Chem Theory Comput. 2013;9:687–697. 10.1021/ct300646g
  • Periole X, Cavalli M, Marrink SJ, et al. Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J Chem Theory Comput. 2009;5:2531–2543.
  • Arnarez C, Uusitalo JJ, Masman MF, et al. Dry martini, a coarse-grained force field for lipid membrane simulations with implicit solvent. J Chem Theory Comput. 2015;11:260–275. 10.1021/ct500477k
  • Yesylevskyy SO, Schäfer LV, Sengupta D, et al. Polarizable water model for the coarse-grained MARTINI force field. PLoS Comput Biol. 2010;6:1–17.
  • Khan HM, Souza PCT, Thallmair S, et al. Capturing Choline-Aromatics Cation-πInteractions in the MARTINI Force Field. J Chem Theory Comput. 2020;16:2550–2560. 10.1021/acs.jctc.9b01194
  • Charlier L, Louet M, Chaloin L, et al. Coarse-grained simulations of the HIV-1 matrix protein anchoring: revisiting its assembly on membrane domains. Biophys J. 2014;106:577–585.
  • Naughton FB, Kalli AC, Sansom MSP. Association of Peripheral Membrane Proteins with Membranes: free Energy of Binding of GRP1 PH Domain with Phosphatidylinositol Phosphate-Containing Model Bilayers. J Phys Chem Lett. 2016;7:1219–1224.
  • Shih AY, Arkhipov A, Freddolino PL, et al. Coarse Grained Protein−Lipid Model with Application to Lipoprotein Particles†. J Phys Chem B. 2006;110:3674–3684.
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14:33–38.
  • Arkhipov A, Yin Y, Schulten K. Four-scale description of membrane sculpting by BAR domains. Biophys J. 2008;95:2806–2821.
  • Shih AY, Freddolino PL, Arkhipov A, et al. Assembly of lipoprotein particles revealed by coarse-grained molecular dynamics simulations. J Struct Biol. 2007;157:579–592.
  • Arkhipov A, Freddolino PL, Schulten K. Stability and Dynamics of Virus Capsids Described by Coarse-Grained Modeling. Structure. 2006;14:1767–1777.
  • Arkhipov A, Freddolino PL, Imada K, et al. Coarse-grained molecular dynamics simulations of a rotating bacterial flagellum. Biophys J. 2006;91:4589–4597.
  • Yin Y, Arkhipov A, Schulten K. Simulations of Membrane Tubulation byLattices of Amphiphysin N-BAR Domains. Structure. 2009;17:882–892.
  • Doherty N, Ritter H, Martinetz T, et al. Neural Computation and Self-Organising Maps: an Introduction. J. Oper. Res. Soc 1994;45:240.
  • Martinetz TM, Berkovich SG, Schulten KJ. “Neural-Gas” Network for Vector Quantization and its Application to Time-Series Prediction. IEEE Trans. Neural Networks. 1993;4:558–569.
  • Martinetz T, Schulten K. Topology representing networks. Neural Networks. 1994;7:507–522.
  • Weissenhorn W. Crystal structure of the endophilin-A1 BAR domain. J Mol Biol. 2005;351:653–661.
  • Henne WM, Kent HM, Ford MGJ, et al. Structure and Analysis of FCHo2 F-BAR Domain: a Dimerizing and Membrane Recruitment Module that Effects Membrane Curvature. Structure. 2007;15:839–852.
  • Inanobe A, Furukawa H, Gouaux E. Mechanism of partial agonist action at the NR1 subunit of NMDA receptors. Neuron. 2005;47:71–84.
  • Simunovic M, Voth GA, Callan-Jones A, et al. When Physics Takes Over: BAR Proteins and Membrane Curvature. Trends Cell Biol. 2015;25:780–792.
  • Qualmann B, Koch D, Kessels MM. Let’s go bananas: revisiting the endocytic BAR code. Embo J. 2011;30:3501–3515.
  • Frost A, Perera R, Roux A, et al. Structural Basis of Membrane Invagination by F-BAR Domains. Cell. 2008;132:807–817. 10.1016/j.cell.2007.12.041
  • Saarikangas J, Zhao H, Pykäläinen A, et al. Molecular Mechanisms of Membrane Deformation by I-BAR Domain Proteins. Curr Biol. 2009;19:95–107. 10.1016/j.cub.2008.12.029
  • Simunovic M, Voth GA. Membrane tension controls the assembly of curvature-generating proteins. Nat Commun. 2015;6:1–8.
  • Sorre B, Callan-Jones A, Manzi J, et al. Nature of curvature coupling of amphiphysin with membranes depends on its bound density. Proc Natl Acad Sci U S A. 2012;109:173–178. 10.1073/pnas.1103594108
  • Peter BJ, Kent HM, Mills IG, et al. BAR Domains as Sensors of Membrane Curvature: the Amphiphysin BAR Structure. Science. 2004;303:495–499.
  • Yu H, Schulten K. Membrane Sculpting by F-BAR Domains Studied by Molecular Dynamics Simulations. PLoS Comput Biol. 2013;9:1002892.
  • Kutzner C, Páll S, Fechner M, et al. More bang for your buck: improved use of GPU nodes for GROMACS 2018. J Comput Chem. 2019;40:2418–2431.
  • Abraham MJ, Murtola T, Schulz R, et al. Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19–25.
  • Lee TS, Cerutti DS, Mermelstein D, et al. GPU-Accelerated Molecular Dynamics and Free Energy Methods in Amber18: performance Enhancements and New Features. J Chem Inf Model. 2018;58:2043–2050.
  • Stone JE, Hardy DJ, Ufimtsev IS, et al. GPU-accelerated molecular modeling coming of age. J Mol Graph Model. 2010;29:116–125.
  • Phillips JC, Hardy DJ, Maia JDC, et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys. 2020;153:044130. 10.1063/5.0014475
  • Mahmood MI, Noguchi H, Okazaki K. Curvature induction and sensing of the F-BAR protein Pacsin1 on lipid membranes via molecular dynamics simulations. Sci Rep. 2019;9:14557.
  • Wang Q, Navarro MVAS, Peng G, et al. Molecular mechanism of membrane constriction and tubulation mediated by the F-BAR protein Pacsin/ Syndapin. Proc Natl Acad Sci U S A. 2009;106:12700–12705.
  • Ducarme P, Rahman M, Brasseur R. IMPALA: a simple restraint field to simulate the biological membrane in molecular structure studies. Proteins Struct. Funct. Genet 1998;30:357–371.
  • Ben-Tal N, Honig B. Helix-helix interactions in lipid bilayers. Biophys J. 1996;71:3046–3050.
  • Sanders CR, Schwonek JP. An approximate model and empirical energy function for solute interactions with a water-phosphatidylcholine interface. Biophys J. 1993;65:1207–1218.
  • Lazaridis T, Karplus M. Effective energy function for proteins in solution. Proteins Struct. Funct. Genet 1999;35:133–152.
  • Schaefer M, Karplus M. A comprehensive analytical treatment of continuum electrostatics. J Phys Chem. 1996;100:1578–1599.
  • Clark Still W, Tempczyk A, Hawley RC, et al. Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics. J Am Chem Soc. 1990;112:6127–6129.
  • Im W, Brooks CL. Interfacial folding and membrane insertion of designed peptides studied by molecular dynamics simulations. Proc Natl Acad Sci U S A. 2005;102:6771–6776.
  • Mihajlovic M, Lazaridis T. Antimicrobial peptides bind more strongly to membrane pores. Biochim Biophys Acta - Biomembr. 2010;1798:1494–1502.
  • Lipkin R, Lazaridis T. Computational studies of peptide-induced membrane pore formation. Philos Trans R Soc B Biol Sci. 2017;372:20160219.
  • Yuzlenko O, Lazaridis T. Membrane protein native state discrimination by implicit membrane models. J Comput Chem. 2013;34:731–738.
  • Grossfield A. Chapter 5 Implicit Modeling of Membranes. Curr Top Membr. 2008;60:131–157.
  • Feig M. Implicit membrane models for membrane protein simulation. Methods Mol Biol. 2008;443:181–196.
  • Sharp KA, Honig B. Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation. J Phys Chem. 1990;94:7684–7692.
  • Gallagher K, Sharp K. Electrostatic contributions to heat capacity changes of DNA-ligand binding. Biophys J. 1998;75:769–776.
  • Ben-Tal N, Ben-Shaul A, Nicholls A, et al. Free-energy determinants of α-helix insertion into lipid bilayers. Biophys J. 1996;70:1803–1812.
  • Baker NA, Sept D, Joseph S, et al. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A. 2001;98:10037–10041.
  • Rocchia W, Alexov E, Honig B. Extending the Applicability of the Nonlinear Poisson−Boltzmann Equation: multiple Dielectric Constants and Multivalent Ions†. J Phys Chem B. 2001;105:6507–6514.
  • Rocchia W, Sridharan S, Nicholls A, et al. Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: applications to the molecular systems and geometric objects. J Comput Chem. 2002;23:128–137.
  • Wang J, Gambhir A, McLaughlin S, et al. Model for the Electrostatic Sequesration of PI(4,5)P 2 by Membrane-Adsorbed Basic Peptides. Biophys J. 2004;86:1969–1986.
  • Murray D, McLaughlin S, Honig B. The Role of Electrostatic Interactions in the Regulation of the Membrane Association of G Protein βγ Heterodimers. J Biol Chem. 2001;276:45153–45159.
  • Spassov VZ, Yan L, Szalma S. Introducing an implicit membrane in generalized born/solvent accessibility continuum solvent models. J Phys Chem B. 2002;106:8726–8738.
  • Im W, Feig M, Brooks CL. An Implicit Membrane Generalized Born Theory for the Study of Structure, Stability, and Interactions of Membrane Proteins. Biophys J. 2003;85:2900–2918.
  • Tanizaki S, Feig M. A generalized Born formalism for heterogeneous dielectric environments: application to the implicit modeling of biological membranes. J Chem Phys. 2005;122:124706.
  • Im W, Lee MS, Brooks CL. Generalized Born Model with a Simple Smoothing Function. J Comput Chem. 2003;24:1691–1702.
  • Choi Y, Pu Y, Peach ML, et al. Conformationally constrained analogues of diacylglycerol (DAG). 28. DAG-dioxolanones reveal a new additional interaction site in the C1b domain of PKCδ. J Med Chem. 2007;50:3465–3481. 10.1021/jm0702579
  • Zhang L, Yethiraj A, Cui Q. Free energy calculations for the peripheral binding of proteins/peptides to an anionic membrane. 1. implicit membrane models. J Chem Theory Comput. 2014;10:2845–2859.
  • Rajendram M, Zhang L, Reynolds BJ, et al. Anionic Phospholipids Stabilize RecA Filament Bundles in Escherichia coli. Mol Cell. 2015;60:374–384. 10.1016/j.molcel.2015.09.009
  • Zhang L, Rajendram M, Weibel DB, et al. Ionic Hydrogen Bonds and Lipid Packing Defects Determine the Binding Orientation and Insertion Depth of RecA on Multicomponent Lipid Bilayers. J Phys Chem B. 2016;120:8424–8437.
  • Lazaridis T. Effective energy function for proteins in lipid membranes. Proteins Struct. Funct. Genet 2003;52:176–192.
  • Lazaridis T. Implicit solvent simulations of peptide interactions with anionic lipid membranes. Proteins Struct. Funct. Genet 2005;58:518–527.
  • Brooks BR, Brooks CL, Mackerell AD, et al. CHARMM: the biomolecular simulation program. J Comput Chem. 2009;30:1545–1614.
  • Neria E, Fischer S, Karplus M. Simulation of activation free energies in molecular systems. J Chem Phys. 1996;105:1902–1921.
  • McLaughlin S. The electrostatic properties of membranes. Annu. Rev. Biophys. Biophys. Chem 1989;18:113–136.
  • Mottamal M, Lazaridis T. Voltage-dependent energetics of alamethicin monomers in the membrane. Biophys Chem. 2006;122:50–57.
  • Zhan H, Lazaridis T. Influence of the membrane dipole potential on peptide binding to lipid bilayers. Biophys Chem. 2012;161:1–7.
  • Lazaridis T. Structural determinants of transmembrane β-barrels. J Chem Theory Comput. 2005;1:716–722.
  • Zhan H, Lazaridis T. Inclusion of lateral pressure/curvature stress effects in implicit membrane models. Biophys J. 2013;104:643–654.
  • Nepal B, Leveritt J, Lazaridis T. Membrane Curvature Sensing by Amphipathic Helices: insights from Implicit Membrane Modeling. Biophysical Journal. 2018;114:2128–2141.
  • Mori T, Sugita Y. Implicit Micelle Model for Membrane Proteins Using Superellipsoid Approximation. J Chem Theory Comput. 2020;16:711–724.
  • Hajjar E, Mihajlovic M, Witko-Sarsat V, et al. Computational prediction of the binding site of proteinase 3 to the plasma membrane. Proteins Struct. Funct. Genet 2008;71:1655–1669.
  • Kantari C, Millet A, Gabillet J, et al. Molecular analysis of the membrane insertion domain of proteinase 3, the Wegenerˈs autoantigen, in RBL cells: implication for its pathogenic activity. J Leukoc Biol. 2011;90:941–950.
  • Nepal B, Sepehri A, Lazaridis T. Mechanisms of negative membrane curvature sensing and generation by ESCRT III subunit Snf7. Protein Sci. 2020;29:1473–1485.
  • Zhang L, Han J, Wang H, et al. Deep Potential Molecular Dynamics: a Scalable Model with the Accuracy of Quantum Mechanics. Phys Rev Lett. 2018;120:143001.
  • Noé F, Tkatchenko A, Müller KR, et al. Machine learning for molecular simulation. Annu Rev Phys Chem. 2020;71:361–390.