4,774
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Partially coherent light beam shaping via complex spatial coherence structure engineering

, &
Article: 2009742 | Received 27 Oct 2021, Accepted 16 Nov 2021, Published online: 19 Dec 2021

References

  • Rubinsztein-Dunlop H, Forbes A, Berry MV, et al. Roadmap on structured light. J Opt. 2016;19:013001.
  • Forbes A, de Oliveira M, Dennis MR. Structured light. Nat Photonics. 2021;15:253–30.
  • Wu R, Feng Z, Zheng Z, et al. Design of freeform illumination optics. Laser Photonics Rev. 2018;12:1700310.
  • Forbes A, Dudley A, McLaren M. Creation and detection of optical modes with spatial light modulators. Adv Opt Photonics. 2016;8:200–227.
  • Ren YX, Lu RD, Gong L. Tailoring light with a digital micromirror device. Ann Phys. 2015;527:447–470.
  • Scholes S, Kara R, Pinnell J, et al. Structured light with digital micromirror devices: a guide to best practice. Opt Eng. 2019;59:041202.
  • Florentin R, Kermene V, Benoist J, et al. Shaping the light amplified in a multimode fiber. Light Sci Appl. 2017;6:e16208–e16208.
  • Lin D, Carpenter J, Feng Y, et al. Reconfigurable structured light generation in a multicore fibre amplifier. Nat Commun. 2020;11:1–9.
  • Rubano A, Cardano F, Piccirillo B, et al. Q-plate technology: a progress review. J Opt Soc Am B. 2019;36:D70–D87.
  • Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater. 2014;13:139–150.
  • Ellenbogen T, Voloch-Bloch N, Ganany-Padowicz A, et al. Nonlinear generation and manipulation of airy beams. Nat Photonics. 2009;3:395–398.
  • Li G, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces. Nat Rev Mater. 2017;2:1–14.
  • Forbes A. Structured light from lasers. Laser Photonics Rev. 2019;13:1900140.
  • Goodman JW. Speckle Phenomena in Optics: Theory and Applications. Greenwood Village, CO: Roberts and Company Publishers; 2007.
  • Andrews LC, Phillips RL. Laser Beam Propagation Through Random Media. Bellingham: SPIE; 2005.
  • Goodman JW. Statistical Optics. New York: John Wiley & Sons; 2015.
  • Korotkova O. Theoretical Statistical Optics. Hackensack: World Scientific; 2021.
  • Zernike F. The concept of degree of coherence and its application to optical problems. Physica. 1938;5:785–795.
  • Mandel L, Wolf E. Coherence properties of optical fields. Rev Mod Phys. 1965;37:231.
  • Mandel L, Wolf E. Optical Coherence and Quantum Optics. Cambridge: Cambridge University Press; 1995.
  • Wolf E. Unified theory of coherence and polarization of random electromagnetic beams. Phys Lett A. 2003;312:263–267.
  • Wolf E. Introduction to the Theory of Coherence and Polarization of Light. Cambridge: Cambridge University Press; 2007.
  • Glauber RJ. Quantum Theory of Optical Coherence: Selected Papers and Lectures. Weinheim: John Wiley & Sons; 2007.
  • Gori F. Matrix treatment for partially polarized, partially coherent beams. Opt Lett. 1998;23:241–243.
  • Gori F, Santarsiero M, Piquero G, et al. Partially polarized gaussian schell-model beams. J Optics A. 2001;3:1. DOI: 10.1088/1464-4258/3/1/301.
  • Friberg AT, Wolf E. Relationships between the complex degrees of coherence in the space–time and in the space–frequency domains. Opt Lett. 1995;20:623–625.
  • Tervo J, Setälä T, Friberg AT. Degree of coherence for electromagnetic fields. Opt Express. 2003;11:1137–1143.
  • Setälä T, Shevchenko A, Kaivola M, et al. Degree of polarization for optical near fields. Phys Rev E. 2002;66:016615.
  • Friberg AT, Setälä T. Electromagnetic theory of optical coherence. J Opt Soc Am A. 2016;33:2431–2442. DOI:10.1364/JOSAA.33.002431.
  • Gil JJ. Interpretation of the coherency matrix for three-dimensional polarization states. Phys Rev A. 2014;90:043858.
  • Gil JJ, Friberg AT, Setälä T, et al. Structure of polarimetric purity of three-dimensional polarization states. Phys Rev A. 2017;95:053856.
  • Norrman A, Friberg AT, Gil JJ, et al. Dimensionality of random light fields. J Eur Opt Soc Rapid Publ. 2017;13:1–5.
  • Gil JJ, Norrman A, Friberg AT, et al. Polarimetric purity and the concept of degree of polarization. Phys Rev A. 2018;97:023838.
  • Gil JJ, Norrman A, Friberg AT, et al. Nonregularity of three-dimensional polarization states. Opt Lett. 2018;43:4611–4614.
  • Gil JJ, Friberg AT, Norrman A, et al. Effect of polarimetric nonregularity on the spin of three-dimensional polarization states. New J Phys. 2021;23:063059.
  • Brosseau C. Fundamentals of Polarized Light: A Statistical Optics Approach. New York: Wiley; 1998.
  • Gori F, Santarsiero M. Devising genuine spatial correlation functions. Opt Lett. 2007;32:3531–3533.
  • Gori F, Ramírez-Sánchez V, Santarsiero M, et al. On genuine cross-spectral density matrices. J Opt A. 2009;11:085706. DOI: 10.1088/1464-4258/11/8/085706.
  • Cai Y, Chen Y, Wang F. Generation and propagation of partially coherent beams with nonconventional correlation functions: a review. J Opt S Am A. 2014;31:2083–2096. DOI:10.1364/JOSAA.31.002083.
  • Wolf E, Collett E. Partially coherent sources which produce the same far-field intensity distribution as a laser. Opt Commun. 1978;25:293–296.
  • De Santis P, Gori F, Guattari G, et al. An example of a collett-wolf source. Opt Commun. 1979;29:256–260.
  • Gori F. Collett-wolf sources and multimode lasers. Opt Commun. 1980;34:301–305.
  • Tervonen E, Friberg AT, Turunen J. Gaussian schell-model beams generated with synthetic acousto-optic holograms. J Opt Soc Am A. 1992;9:796–803. DOI:10.1364/JOSAA.9.000796.
  • Gori F, Guattari G, Padovani C. Modal expansion for J0-correlated Schell-model sources. Opt Commun. 1987;64:311–316.
  • Palma C, Borghi R, Cincotti G. Beams originated by J0-correlated Schell-model planar sources. Opt Commun. 1996;125:113–121.
  • Gori F, Santarsiero M, Borghi R. Modal expansion for J0-correlated electromagnetic sources. Opt Lett. 2008;33:1857–1859.
  • Gbur G, Visser TD. Can spatial coherence effects produce a local minimum of intensity at focus? Opt Lett. 2003;28:1627–1629.
  • van Dijk T, Gbur G, Visser TD. Shaping the focal intensity distribution using spatial coherence. J Opt Soc Am A. 2008;25:575–581. DOI:10.1364/JOSAA.25.000575.
  • Raghunathan SB, van Dijk T, Peterman EJ, et al. Experimental demonstration of an intensity minimum at the focus of a laser beam created by spatial coherence: application to the optical trapping of dielectric particles. Opt Lett. 2010;35:4166–4168.
  • Gu Y, Gbur G. Scintillation of pseudo-Bessel correlated beams in atmospheric turbulence. J Opt Soc Am A. 2010;27:2621–2629. DOI:10.1364/JOSAA.27.002621.
  • Sahin S, Korotkova O. Light sources generating far fields with tunable flat profiles. Opt Lett. 2012;37:2970–2972.
  • Korotkova O, Sahin S, Shchepakina E. Multi-Gaussian Schell-model beams. J Opt Soc Am A. 2012;29:2159–2164. DOI:10.1364/JOSAA.29.002159.
  • Korotkova O. Random sources for rectangular far fields. Opt Lett. 2014;39:64–67.
  • Mei Z, Korotkova O. Random sources generating ring-shaped beams. Opt Lett. 2013;38:91–93.
  • Wang X, Yao M, Qiu Z, et al. Evolution properties of Bessel-Gaussian Schell-model beams in non-Kolmogorov turbulence. Opt Express. 2015;23:12508–12523.
  • Avramov-Zamurovic S, Nelson C, Guth S, et al. Experimental study of electromagnetic Bessel-Gaussian Schell model beams propagating in a turbulent channel. Opt Commun. 2016;359:207–215.
  • Chen Y, Wang F, Zhao C, et al. Experimental demonstration of a Laguerre-Gaussian correlated Schell-model vortex beam. Opt Express. 2014;22:5826–5838.
  • Chen Y, Yu J, Yuan Y, et al. Theoretical and experimental studies of a rectangular Laguerre–Gaussian-correlated Schell-model beam. Appl Phys B. 2016;122:31.
  • Zhou Y, Yuan Y, Qu J, et al. Propagation properties of Laguerre-Gaussian correlated Schell-model beam in non-Kolmogorov turbulence. Opt Express. 2016;24:10682–10693.
  • Xu HF, Zhou Y, Wu HW, et al. Focus shaping of the radially polarized Laguerre-Gaussian-correlated Schell-model vortex beams. Opt Express. 2018;26:20076–20088.
  • Liang C, Khosravi R, Liang X, et al. Standard and elegant higher-order Laguerre–Gaussian correlated Schell-model beams. J Opt. 2019;21:085607.
  • Su JB, Xu CA, Xu HF, et al. Evolution properties of the radially polarized Laguerre–Gaussian-correlated Schell-model beams propagating in uniaxial crystals. J Opt Soc Am A. 2020;37:529–539. DOI: 10.1364/JOSAA.382665.
  • Mei Z, Korotkova O. Cosine-Gaussian Schell-model sources. Opt Lett. 2013;38:2578–2580.
  • Mei Z, Shchepakina E, Korotkova O. Propagation of cosine-Gaussian-correlated Schell-model beams in atmospheric turbulence. Opt Express. 2013;21:17512–17519.
  • Liang C, Wang F, Liu X, et al. Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry. Opt Lett. 2014;39:769–772.
  • Xu HF, Zhang Z, Qu J, et al. Propagation factors of cosine-Gaussian-correlated Schell-model beams in non-Kolmogorov turbulence. Opt Express. 2014;22:22479–22489.
  • Pan L, Ding C, Wang H. Diffraction of cosine-Gaussian-correlated Schell-model beams. Opt Express. 2014;22:11670–11679.
  • Zhu S, Chen Y, Wang J, et al. Generation and propagation of a vector cosine-Gaussian correlated beam with radial polarization. Opt Express. 2015;23:33099–33115.
  • Wang J, Zhu S, Wang H, et al. Second-order statistics of a radially polarized cosine-Gaussian correlated Schell-model beam in anisotropic turbulence. Opt Express. 2016;24:11626–11639.
  • Chen Y, Gu J, Wang F, et al. Self-splitting properties of a Hermite-Gaussian correlated Schell-model beam. Phys Rev A. 2015;91:013823.
  • Peng X, Lu X, Liu X, et al. Generation and propagation of a Hermite-Gaussian correlated Schell-model LG0l Beam. Appl Sci. 2019;9:610.
  • Zhou ZL, Qu J. Self-splitting and propagation factors of a superimposed Hermite-Gaussian correlated Schell-model beam in turbulent atmosphere. Results Phys. 2021;28:104609.
  • Zhang H, Cui Z, Han Y, et al. Average intensity and beam quality of Hermite-Gaussian correlated Schell-model beams propagating in turbulent biological tissue. Front Phys. 2021;9:159.
  • Korotkova O, Chen X. Phase structuring of the complex degree of coherence. Opt Lett. 2018;43:4727–4730.
  • Chen X, Korotkova O. Complex degree of coherence modeling with famous planar curves. Opt Lett. 2018;43:6049–6052.
  • Chen X, Korotkova O. Phase structuring of 2D complex coherence states. Opt Lett. 2019;44:2470–2473.
  • Korotkova O. Multi-Gaussian Schell-model source with a complex coherence state. J Opt. 2019;21:045607.
  • Mei Z, Korotkova O. Asymmetric coherence gratings. Opt Lett. 2020;45:1366–1369.
  • Mei Z, Korotkova O. Linear combinations of the complex degrees of coherence. Photonics. 2021;8:146.
  • Chen Y, Ponomarenko SA, Cai Y. Self-steering partially coherent beams. Sci Rep. 2017;7:1–7.
  • Wang F, Chen Y, Guo L, et al. Complex Gaussian representations of partially coherent beams with nonconventional degrees of coherence. J Opt Soc Am A. 2017;34:1824–1829. DOI: 10.1364/JOSAA.34.001824.
  • Sun B, Huang Z, Zhu X, et al. Random source for generating Airy-like spectral density in the far field. Opt Express. 2020;28:7182–7196.
  • Voelz D, Xiao X, Korotkova O. Numerical modeling of Schell-model beams with arbitrary far-field patterns. Opt Lett. 2015;40:352–355.
  • Hyde IVM, Basu S, Xiao X, et al. Producing any desired far-field mean irradiance pattern using a partially-coherent Schell-model source. J Opt. 2015;17:055607.
  • Peng D, Huang Z, Liu Y, et al. Optical coherence encryption with structured random light. PhotoniX. 2021;2:1.
  • Mei Z, Korotkova O, Shchepakina E. Electromagnetic multi-Gaussian Schell-model beams. J Opt. 2012;15:025705.
  • Mei Z, Korotkova O. Electromagnetic cosine-Gaussian Schell-model beams in free space and atmospheric turbulence. Opt Express. 2013;21:27246–27259.
  • Mei Z, Mao Y. Electromagnetic sinc Schell-model beams and their statistical properties. Opt Express. 2014;22:22534–22546.
  • Korotkova O, Mei Z. Random electromagnetic model beams with correlations described by two families of functions. Opt Lett. 2015;40:5534–5537.
  • Chen Y, Wang F, Yu J, et al. Vector Hermite-Gaussian correlated Schell-model beam. Opt Express. 2016;24:15232–15250.
  • Wang F, Korotkova O. Random sources for beams with azimuthally varying polarization properties. Opt Express. 2016;24:15446–15455.
  • Liang C, Mi C, Wang F, et al. Vector optical coherence lattices generating controllable far-field beam profiles. Opt Express. 2017;25:9872–9885.
  • Mao H, Chen Y, Liang C, et al. Self-steering partially coherent vector beams. Opt Express. 2019;27:14353–14368.
  • Mi C, Liang C, Wang F, et al. Modulating the statistical properties of a vector partially coherent beam by a 4f optical system. J Quant Spectrosc Radiat Transf. 2019;222:145–153.
  • Korotkova O, Chen X, Setälä T. Electromagnetic Schell-model beams with arbitrary complex correlation states. Opt Lett. 2019;44:4945–4948.
  • Ata Y, Korotkova O. Electromagnetic phase coherence gratings for atmospheric applications. Opt Lett. 2021;46:5240–5243.
  • Chen Y, Wang F, Liu L, et al. Generation and propagation of a partially coherent vector beam with special correlation functions. Phys Rev A. 2014;89:013801.
  • Wu G, Wang F, Cai Y. Coherence and polarization properties of a radially polarized beam with variable spatial coherence. Opt Express. 2012;20:28301–28318.
  • Lajunen H, Saastamoinen T. Propagation characteristics of partially coherent beams with spatially varying correlations. Opt Lett. 2011;36:4104–4106.
  • Tong Z, Korotkova O. Nonuniformly correlated light beams in uniformly correlated media. Opt Lett. 2012;37:3240–3242.
  • Gu Y, Gbur G. Scintillation of nonuniformly correlated beams in atmospheric turbulence. Opt Lett. 2013;38:1395–1397.
  • Tong Z, Korotkova O. Electromagnetic nonuniformly correlated beams. J Opt Soc A A. 2012;29:2154–2158. DOI:10.1364/JOSAA.29.002154.
  • Mei Z. Light sources generating self-focusing beams of variable focal length. Opt Lett. 2014;39:347–350.
  • Chen Y, Cai Y. Correlation-induced self-focusing and self-shaping effect of a partially coherent beam. High Power Laser Sci Eng. 2016;4. doi:10.1017/hpl.2016.19.
  • Yu J, Wang F, Liu L, et al. Propagation properties of Hermite non-uniformly correlated beams in turbulence. Opt Express. 2018;26:16333–16343.
  • Wu D, Wang F, Cai Y. High-order nonuniformly correlated beams. Opt Laser Technol. 2018;99:230–237.
  • Santarsiero M, Martínez-Herrero R, Maluenda D, et al. Partially coherent sources with circular coherence. Opt Lett. 2017;42:1512–1515.
  • Piquero G, Santarsiero M, Martínez-Herrero R, et al. Partially coherent sources with radial coherence. Opt Lett. 2018;43:2376–2379.
  • Ding C, Koivurova M, Turunen J, et al. Self-focusing of a partially coherent beam with circular coherence. J Opt Soc Am A. 2017;34:1441–1447. DOI: 10.1364/JOSAA.34.001441.
  • Mei Z. Special correlation model sources producing a self-focusing field. Opt Express. 2021;29:25337–25343.
  • Simon R, Mukunda N. Twisted Gaussian Schell-model beams. J Opt Soc Am A. 1993;10:95–109. DOI:10.1364/JOSAA.10.000095.
  • Simon R, Mukunda N. Twist phase in Gaussian-beam optics. J Opt Soc Am A. 1998;15:2373–2382. DOI:10.1364/JOSAA.15.002373.
  • Friberg AT, Tervonen E, Turunen J. Interpretation and experimental demonstration of twisted Gaussian Schell-model beams. J Opt Soc Am A. 1994;11:1818–1826. DOI:10.1364/JOSAA.11.001818.
  • Wang H, Peng X, Liu L, et al. Generating bona fide twisted Gaussian Schell-model beams. Opt Lett. 2019;44:3709–3712.
  • Liu L, Huang Y, Chen Y, et al. Orbital angular moment of an electromagnetic Gaussian Schell-model beam with a twist phase. Opt Express. 2015;23:30283–30296.
  • Hutter L, Lima G, Walborn SP. Boosting entanglement generation in down-conversion with incoherent illumination. Phys Rev Lett. 2020;125:193602.
  • Ambrosini D, Bagini V, Gori F, et al. Twisted Gaussian Schell-model beams: a superposition model. J Mod Opt. 1994;41:1391–1399.
  • Borghi R, Gori F, Guattari G, et al. Twisted Schell-model beams with axial symmetry. Opt Lett. 2015;40:4504–4507.
  • Mei Z, Korotkova O. Random sources for rotating spectral densities. Opt Lett. 2017;42:255–258.
  • Borghi R. Twisting partially coherent light. Opt Lett. 2018;43:1627–1630.
  • Gori F, Santarsiero M. Devising genuine twisted cross-spectral densities. Opt Lett. 2018;43:595–598.
  • Mei Z, Korotkova O. Twisted EM beams with structured correlations. Opt Lett. 2018;43:3905–3908.
  • Wan L, Zhao D. Twisted Gaussian Schell-model array beams. Opt Lett. 2018;43:3554–3557.
  • Peng X, Liu L, Wang F, et al. Twisted Laguerre-Gaussian Schell-model beam and its orbital angular moment. Opt Express. 2018;26:33956–33969.
  • Santarsiero M, Gori F, Alonzo M. Higher-order twisted/astigmatic Gaussian Schell-model cross-spectral densities and their separability features. Opt Express. 2019;27:8554–8565.
  • Lin R, Yu H, Zhu X, et al. The evolution of spectral intensity and orbital angular momentum of twisted Hermite Gaussian Schell model beams in turbulence. Opt Express. 2020;28:7152–7164.
  • Wang H, Peng X, Liu L, et al. Twisted elliptical multi-Gaussian Schell-model beams and their propagation properties. J Opt Soc Am A. 2020;37:89–97.
  • Liu Z, Wan L, Zhou Y, et al. Progress on studies of beams carrying twist. Photonics. 2021;8:92.
  • Gori F, Santarsiero M. Variant-coherence Gaussian sources. Photonics. 2021;8:403.
  • Santarsiero M, Martnez-Herrero R, Piquero G, et al. Modal analysis of pseudo-Schell model sources. Photonics. 2021;8:449.
  • Ostrovsky AS. Coherent-Mode Representations in Optics. Bellingham: SPIE; 2006.
  • Martínez-Herrero R, Mejías P, Gori F. Genuine cross-spectral densities and pseudo-modal expansions. Opt Lett. 2009;34:1399–1401.
  • Martínez-Herrero R, Mejías PM. Elementary-field expansions of genuine cross-spectral density matrices. Opt Lett. 2009;34:2303–2305.
  • Yang S, Ponomarenko SA, Chen ZD. Coherent pseudo-mode decomposition of a new partially coherent source class. Opt Lett. 2015;40:3081–3084.
  • Singh M, Lajunen H, Tervo J, et al. Imaging with partially coherent light: elementary-field approach. Opt Express. 2015;23:28132–28140.
  • Hyde MW IV, Avramov-Zamurovic S. Generating dark and antidark beams using the genuine cross-spectral density function criterion. J Opt Soc Am A. 2019;36:1058–1063.
  • De Sande J, Martnez-Herrero R, Piquero G, et al. Pseudo-Schell model sources. Opt Express. 2019;27:3963–3977.
  • Hyde MW IV. Stochastic complex transmittance screens for synthesizing general partially coherent sources. J Opt Soc Am A. 2020;37:257–264. DOI:10.1364/JOSAA.381772.
  • Hyde MW IV. Synthesizing general electromagnetic partially coherent sources from random, correlated complex screens. Optics. 2020;1:97–113.
  • Hyde MW IV. Independently controlling stochastic field realization magnitude and phase statistics for the construction of novel partially coherent sources. Photonics. 2021;8:60.
  • Prahl SA, Fischer DG, Duncan DD. Monte Carlo Green’s function formalism for the propagation of partially coherent light. J Opt Soc Am A. 2009;26:1533–1543. DOI:10.1364/JOSAA.26.001533.
  • Greffet JJ, De La Cruz-Gutierrez M, Ignatovich PV, et al. Influence of spatial coherence on scattering by a particle. J Opt Soc Am A. 2003;20:2315–2320. DOI: 10.1364/JOSAA.20.002315.
  • Lahiri M, Wolf E, Fischer DG, et al. Determination of correlation functions of scattering potentials of stochastic media from scattering experiments. Phys Rev Lett. 2009;102:123901.
  • van Dijk T, Fischer DG, Visser TD, et al. Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere. Phys Rev Lett. 2010;104:173902.
  • Korotkova O. Design of weak scattering media for controllable light scattering. Opt Lett. 2015;40:284–287.
  • Collins SA. Lens-system diffraction integral written in terms of matrix optics. J Opt Soc Am. 1970;60:1168–1177.
  • Lin Q, Cai Y. Tensor ABCD law for partially coherent twisted anisotropic Gaussian–Schell model beams. Opt Lett. 2002;27:216–218.
  • Wang F, Korotkova O. Convolution approach for beam propagation in random media. Opt Lett. 2016;41:1546–1549.
  • Wang F, Cai Y, Korotkova O. Partially coherent standard and elegant Laguerre-Gaussian beams of all orders. Opt Express. 2009;17:22366–22379.
  • Wang F, Zhu S, Cai Y. Experimental study of the focusing properties of a Gaussian Schell-model vortex beam. Opt Lett. 2011;36:3281–3283.
  • Dong Y, Cai Y, Zhao C, et al. Statistics properties of a cylindrical vector partially coherent beam. Opt Express. 2011;19:5979–5992.
  • Wang F, Cai Y, Dong Y, et al. Experimental generation of a radially polarized beam with controllable spatial coherence. Appl Phys Lett. 2012;100:051108.
  • Lumer Y, Liang Y, Schley R, et al. Incoherent self-accelerating beams. Optica. 2015;2:886–892.
  • Efremidis NK, Chen Z, Segev M, et al. Airy beams and accelerating waves: an overview of recent advances. Optica. 2019;6:686–701.
  • Chen Y, Cai Y. Generation of a controllable optical cage by focusing a Laguerre–Gaussian correlated Schell-model beam. Opt Lett. 2014;39:2549–2552.
  • Shirai T, Dogariu A, Wolf E. Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence. J Opt Soc Am A. 2003;20:1094–1102. DOI:10.1364/JOSAA.20.001094.
  • Martinsson P, Lajunen H, Friberg AT. Communication modes with partially coherent fields. J Opt Soc Am A. 2007;24:3336–3342. DOI:10.1364/JOSAA.24.003336.
  • Voipio T, Blomstedt K, Setälä T, et al. Conservation of electromagnetic coherent-mode structure on propagation. Opt Commun. 2015;340:93–101.
  • Ma P, Kacerovská B, Khosravi R, et al. Numerical approach for studying the evolution of the degrees of coherence of partially coherent beams propagation through an ABCD optical system. Appl Sci. 2019;9:2084.
  • Tong R, Dong Z, Chen Y, et al. Fast calculation of tightly focused random electromagnetic beams: controlling the focal field by spatial coherence. Opt Express. 2020;28:9713–9727.
  • Redding B, Choma MA, Cao H. Speckle-free laser imaging using random laser illumination. Nat Photonics. 2012;6:355–359.
  • Liang C, Zhu X, Mi C, et al. High-quality partially coherent Bessel beam array generation. Opt Lett. 2018;43:3188–3191.
  • Wang F, Chen Y, Liu X, et al. Self-reconstruction of partially coherent light beams scattered by opaque obstacles. Opt Express. 2016;24:23735–23746.
  • Xiao C, Zeng P, Hu L, et al. Generation of arbitrary partially coherent Bessel beam array with a LED for confocal imaging. Opt Express. 2019;27:29510–29520.
  • Peng X, Wang H, Liu L, et al. Self-reconstruction of twisted Laguerre-Gaussian Schell-model beams partially blocked by an opaque obstacle. Opt Express. 2020;28:31510–31523.
  • Xu Z, Liu X, Chen Y, et al. Self-healing properties of Hermite-Gaussian correlated Schell-model beams. Opt Express. 2020;28:2828–2837.
  • Liu Y, Chen Y, Wang F, et al. Robust far-field imaging by spatial coherence engineering. Opto-Electronic Adv. 2021;4:210027.
  • Aiello A, Agarwal GS, Paúr M, et al. Unraveling beam self-healing. Opt Express. 2017;25:19147–19157.
  • Gbur G. Partially coherent beam propagation in atmospheric turbulence. J Opt Soc Am A. 2014;31:2038–2045. DOI:10.1364/JOSAA.31.002038.
  • Wang F, Liu X, Cai Y. Propagation of partially coherent beam in turbulent atmosphere: a review (invited review). Prog Electromagnet Res. 2015;150:123–143.
  • Wang F, Liu X, Yuan Y, et al. Experimental generation of partially coherent beams with different complex degrees of coherence. Opt Lett. 2013;38:1814–1816.
  • Cai Y, Chen Y, Yu J, et al. Generation of partially coherent beams. Prog Opt. 2017;62:157–223.
  • Hyde MW IV, Basu S, Voelz DG, et al. Experimentally generating any desired partially coherent Schell-model source using phase-only control. J Appl Phys. 2015;118:093102.
  • Hyde MW IV, Bose-Pillai S, Voelz DG, et al. Generation of vector partially coherent optical sources using phase-only spatial light modulators. Phys Rev Appl. 2016;6:064030.
  • Hyde MW IV, Bose-Pillai S, Xiao X, et al. A fast and efficient method for producing partially coherent sources. J Opt. 2016;19:025601.
  • Hyde MW IV, Bose-Pillai S, Wood RA. Synthesis of non-uniformly correlated partially coherent sources using a deformable mirror. Appl Phys Lett. 2017;111:101106.
  • Hyde MW IV, Xiao X, Voelz DG. Generating electromagnetic nonuniformly correlated beams. Opt Lett. 2019;44:5719–5722.
  • Wang F, Toselli I, Korotkova O. Two spatial light modulator system for laboratory simulation of random beam propagation in random media. Appl Opt. 2016;55:1112–1117.
  • Hyde MW IV, Basu S. Two spatial light modulator system for laboratory simulation of random beam propagation in random media: comment. Appl Opt. 2016;55:5596–5597.
  • Chen X, Li J, Rafsanjani SMH, et al. Synthesis of Im-Bessel correlated beams via coherent modes. Opt Lett. 2018;43:3590–3593.
  • Bhattacharjee A, Sahu R, Jha AK. Generation of a Gaussian Schell-model field as a mixture of its coherent modes. J Opt. 2019;21:105601.
  • Zhu X, Wang F, Zhao C, et al. Experimental realization of dark and antidark diffraction-free beams. Opt Lett. 2019;44:2260–2263.
  • Wang H, Peng X, Zhang H, et al. Experimental synthesis of partially coherent beam with controllable twist phase and measuring its orbital angular momentum. Nanophotonics. 2021. DOI:10.1515/nanoph-2021-0432.
  • Zhu X, Yu J, Wang F, et al. Synthesis of vector nonuniformly correlated light beams by a single digital mirror device. Opt Lett. 2021;46:2996–2999.
  • Zhu X, Yu J, Chen Y, et al. Experimental synthesis of random light sources with circular coherence by digital micro-mirror device. Appl Phys Lett. 2020;117:121102.
  • Gatti A, Brambilla E, Bache M, et al. Ghost imaging with thermal light: comparing entanglement and classicalcorrelation. Phys Rev Lett. 2004;93:093602.
  • Cai Y, Zhu SY. Ghost imaging with incoherent and partially coherent light radiation. Phys Rev E. 2005;71:056607.
  • Wang F, Lv H, Chen Y, et al. Three modal decompositions of Gaussian Schell-model sources: comparative analysis. Opt Express. 2021;29:29676–29689.
  • Huang Z, Chen Y, Wang F, et al. Measuring complex degree of coherence of random light fields with generalized Hanbury Brown–Twiss experiment. Phys Rev Appl. 2020;13:044042.
  • Dong Z, Huang Z, Chen Y, et al. Measuring complex correlation matrix of partially coherent vector light via a generalized Hanbury Brown–Twiss experiment. Opt Express. 2020;28:20634–20644.
  • Batarseh M, Sukhov S, Shen Z, et al. Passive sensing around the corner using spatial coherence. Nat Commun. 2018;9:1–6.
  • Zhu X, Yao H, Yu J, et al. Inverse design of a spatial filter in edge enhanced imaging. Opt Lett. 2020;45:2542–2545.
  • Liang C, Wu G, Wang F, et al. Overcoming the classical Rayleigh diffraction limit by controlling two-point correlations of partially coherent light sources. Opt Express. 2017;25:28352–28362.
  • Liang C, Monfared YE, Liu X, et al. Optimizing illumination’s complex coherence state for overcoming Rayleigh’s resolution limit. Chin Opt Lett. 2021;19:052601.
  • Shen Y, Sun H, Peng D, et al. Optical image reconstruction in 4f imaging system: Role of spatial coherence structure engineering. Appl Phys Lett. 2021;118:181102.
  • Auñón J, Nieto-Vesperinas M. Partially coherent fluctuating sources that produce the same optical force as a laser beam. Opt Lett. 2013;38:2869–2872.
  • Luo M, Zhao D. Simultaneous trapping of two types of particles by using a focused partially coherent cosine-Gaussian-correlated Schell-model beam. Laser Phys. 2014;24:086001.
  • Liu X, Zhao D. Optical trapping Rayleigh particles by using focused multi-Gaussian Schell-model beams. Appl Opt. 2014;53:3976–3981.
  • Liu X, Zhao D. Trapping two types of particles with a focused generalized Multi-Gaussian Schell model beam. Opt Commun. 2015;354:250–255.
  • Zhou Y, Xu HF, Yuan Y, et al. Trapping two types of particles using a Laguerre–Gaussian correlated Schell-model beam. IEEE Photonics J. 2016;8:1–10.
  • Zhang H, Han Y, Wang J, et al. Optical trapping forces on Rayleigh particles by a focused Bessel-Gaussian correlated Schell-model beam. J Quant Spectrosc Radiat Transf. 2019;235:309–316.
  • Yang B, Chen Y, Wang F, et al. Trapping two types of Rayleigh particles simultaneously by a focused rotational elliptical Laguerre–Gaussian correlated Schell-model beam. J Quant Spectrosc Radiat Transf. 2021;262:107518.
  • Gao Y, Cui Y, Ji L, et al. Development of low-coherence high-power laser drivers for inertial confinement fusion. Matter Radiat Extrem. 2020;5:065201. DOI: 10.1063/5.0009319.
  • Gao Y, Ji L, Zhao X, et al. High-power, low-coherence laser driver facility. Opt Lett. 2020;45:6839–6842.
  • Huang Y, Chen H, Fontaine NK, et al. Optical broadcasting employing incoherent and low-coherence spatial modes for bi-directional optical wireless communications. J Lightwave Technol. 2020;39:833–838.
  • Cao H, Chriki R, Bittner S, et al. Complex lasers with controllable coherence. Nat Rev Phys. 2019;1:156–168.
  • Koivurova M, Hakala TK, Turunen J, et al. Coherence switching with metamaterials. Phys Rev Lett. 2021;127:153902.
  • Ping C, Liang C, Wang F, et al. Radially polarized multi-Gaussian Schell-model beam and its tight focusing properties. Opt Express. 2017;25:32475–32490.
  • Chen Y, Wang F, Dong Z, et al. Polarimetric dimension and nonregularity of tightly focused light beams. Phys Rev A. 2020;101:053825.
  • Chen Y, Wang F, Dong Z, et al. Structure of transverse spin in focused random light. Phys Rev A. 2021;104:013516.
  • Norrman A, Ponomarenko SA, Friberg AT. Partially coherent surface plasmon polaritons. EPL (Europhysics Letters). 2017;116:64001.
  • Chen Y, Norrman A, Ponomarenko SA, et al. Plasmon coherence determination by nanoscattering. Opt Lett. 2017;42:3279–3282.
  • Mao H, Chen Y, Ponomarenko SA, et al. Coherent pseudo-mode representation of partially coherent surface plasmon polaritons. Opt Lett. 2018;43:1395–1398.
  • Chen Y, Norrman A, Ponomarenko SA, et al. Partially coherent axiconic surface plasmon polariton fields. Phys Rev A. 2018;97:041801.
  • Chen Y, Norrman A, Ponomarenko SA, et al. Coherence lattices in surface plasmon polariton fields. Opt Lett. 2018;43:3429–3432.
  • Chen Y, Norrman A, Ponomarenko SA, et al. Partially coherent surface plasmon polariton vortex fields. Phys Rev A. 2019;100:053833.
  • Daniel S, Saastamoinen K, Ponomarenko SA, et al. Scattering of partially coherent surface plasmon polariton fields by metallic nanostripe. J Eur Opt Soc Rapid Publ. 2019;15:1–8.
  • Chen Y, Norrman A, Ponomarenko SA, et al. Optical coherence and electromagnetic surface waves. Prog Opt. 2020;65:105–172.
  • Chen Y, Norrman A, Ponomarenko SA, et al. Spin density in partially coherent surface-plasmon-polariton vortex fields. Phys Rev A. 2021;103:063511.
  • Torres-Company V, Lancis J, Andres P. Space-time analogies in optics. Prog Opt. 2011;56:1–80.
  • Chong A, Wan C, Chen J, et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat Photonics. 2020;14:350–354.
  • Jolly SW, Gobert O, Quéré F. Spatio-temporal characterization of ultrashort laser beams: a tutorial. J Opt. 2020;22:103501.
  • Shirai T, Setälä T, Friberg AT. Temporal ghost imaging with classical non-stationary pulsed light. J Opt Soc Am B. 2010;27:2549–2555.
  • Ding C, Koivurova M, Turunen J, et al. Coherence control of pulse trains by spectral phase modulation. J Opt. 2017;19:095501.
  • Al lakki, M Friberg AT, Setälä T . Complete coherence of random, nonstationary electromagnetic fields. Opt Lett. 2021;46:1756–1759.
  • Hyde MW IV. Twisted space-frequency and space-time partially coherent beams. Sci Rep. 2020;10:1–12.
  • Hyde MW IV. Twisted spatiotemporal optical vortex random fields. IEEE Photonics J. 2021;13:1–16.