3,980
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Quasi-one-dimensional topological material Bi4X4(X=Br,I)

, &
Article: 2057234 | Received 30 Nov 2021, Accepted 19 Mar 2022, Published online: 12 Apr 2022

References

  • Kane CL, Mele EJ. 2 topological order and the quantum spin hall effect. Phys Rev Lett. 2005;95:146802.
  • Konig M, Wiedmann S, Brune C, et al. Quantum spin hall insulator state in hgte quantum wells. Science. 2007;318:766.
  • Hasan MZ, Kane CL. Colloquium: topological insulators. Rev Mod Phys. 2010;82:3045–26.
  • Qi XL, Zhang SC. Topological insulators and superconductors. Rev Mod Phys. 2011;83:1057–1110.
  • Frolov SM, Manfra MJ, Sau JD. Topological superconductivity in hybrid devices. Nat Phys. 2020;16:718–724.
  • Liu J, Xia FN, Xiao D. Semimetals for high-performance photodetection. Nat Mater. 2020;19:830–837.
  • Dikopoltsev A, Harder TH, Lustig E. Topological insulator vertical-cavity laser array. Science. 2021;373:1514–1517.
  • He QL, Hughes TL, Armitage NP, et al. Topological spintronics and magnetoelectronics. Nat Mater. 2022;21:15–23.
  • Narang P, Garcia CAC, Felser C. The topology of electronic band structures. Nat Mater. 2021;20:293–300.
  • Xie BY, Wang HX, Zhang XJ. Higher-order band topology. Nat Rev Phys. 2021;3:520–532.
  • Zhang HJ, Liu CX, Qi XL, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys. 2009;5:438–442.
  • Xia Y, Qian D, Hsieh D, et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat Phys. 2009;5:398–402.
  • Zhang Y, He K, Chang CZ, et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat Phys. 2010;6:584–587.
  • Hsieh D, Xia Y, Qian D, et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature. 2009;460:1101–1105.
  • Chen YL, Analytis JG, Chu JH, et al. Experimental Realization of a Three-Dimensional Topological Insulator, Bi 2 Te 3. Science. 2009;325:178–181.
  • Hsieh D, Xia Y, Qian D, et al. Observation of time-reversal-protected single-dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3. Phys Rev Lett. 2009;103:146401.
  • Zhang T, Cheng P, Chen X, et al. Experimental demonstration of topological surface states protected by time-reversal symmetry. Phys Rev Lett. 2009;103:266803.
  • Bernevig BA, Felser C, Beidenkopf H. Progress and prospects in magnetic topological materials. Nature. 2022;603:41–51.
  • Kotta E, Miao L, Xu YS, et al. Spectromicroscopic measurement of surface and bulk band structure interplay in a disordered topological insulator. Nat Phys. 2020;16:285–289.
  • Otrokov MM, Klimovskikh II, Bentmann H, et al. Prediction and observation of an antiferromagnetic topological insulator. Nature. 2019;576:416–422.
  • Fu L, Kane CL, Mele EJ. Topological insulators in three dimensions. Phys Rev Lett. 2007;98:106803.
  • Avraham N, Nayak AK, Steinbok A, et al. Visualizing coexisting surface states in the weak and crystalline topological insulator Bi2TeI. Nat Mater. 2020;19:610–616.
  • Wang J, Zhang SC. Topological states of condensed matter. Nat Mater. 2017;16:1062–1067.
  • Pauly C, Rasche B, Koepernik K, et al. Subnanometre-wide electron channels protected by topology. Nat Phys. 2015;11:338–343.
  • Rasche B, Isaeva A, Ruck M, et al. Stacked topological insulator built from bismuth-based graphene sheet analogues. Nat Mater. 2013;12:422–425.
  • Yan BH, Müchler L, Felser C. Prediction of weak topological insulators in layered semiconductors. Phys Rev Lett. 2012;109:116406.
  • Zhang TT, Jiang Y, Song ZD, et al. Catalogue of topological electronic materials. Nature. 2019;566:475–479.
  • Kobayashi K, Ohtsuki T, Imura KI. Disordered weak and strong topological insulators. Phys Rev Lett. 2013;110:236803.
  • Mong RSK, Bardarson JH, Moore JE. Quantum transport and two-parameter scaling at the surface of a weak topological insulator. Phys Rev Lett. 2012;108:076804.
  • Mross DF, Essin A, Alicea J, et al. Anomalous quasiparticle symmetries and non-Abelian defects on symmetrically gapped surfaces of weak topological insulators. Phys Rev Lett. 2016;116:036803.
  • Liu CC, Feng WX, Yao YG. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys Rev Lett. 2011;107:076802.
  • Liu CC, Jiang H, Yao YG. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys Rev B. 2011;84:195430.
  • Chen L, Liu CC, Feng BJ, et al. Evidence for dirac fermions in a honeycomb lattice based on silicon. Phys Rev Lett. 2012;109:056804.
  • Reis F, Li G, Dudy L, et al. Bismuthene on a SiC substrate: a candidate for a high-temperature quantum spin Hall material. Science. 2017;357:287–290.
  • Wu SF, Fatemi V, Gibson QD, et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science. 2018;359:76–79.
  • Tang S, Zhang CF, Wong D, et al. Quantum spin hall state in monolayer 1T’-WTe2. Nat Phys. 2017;13:683–687.
  • Drozdov IK, Alexandradinata A, Jeon S, et al. One-dimensional topological edge states of bismuth bilayers. Nat Phys. 2014;10:664–669.
  • Strunz J, Wiedenmann J, Fleckenstein C, et al. Interacting topological edge channels. Nat Phys. 2020;16:83–88.
  • Sun B, Zhao WJ, Palomaki T, et al. Evidence for equilibrium exciton condensation in monolayer WTe2. Nat Phys. 2022;18:94–99.
  • Pribiag VS, Beukman AJA, Qu FM, et al. Edge-mode superconductivity in a two-dimensional topological insulator. Nat Nanotechnol. 2015;10:593–597.
  • Tang F, Po HC, Vishwanath A, et al. Efficient topological materials discovery using symmetry indicators. Nat Phys. 2019;15:470.
  • Tang F, Po HC, Vishwanath A, et al. Comprehensive search for topological materials using symmetry indicators. Nature. 2019;566:486–489.
  • Schindler F, Wang ZJ, Vergniory MG, et al. Higher-order topology in bismuth. Nat Phys. 2018;14:918–924.
  • Zhao PL, Qiang XB, Lu HZ, et al. Coulomb instabilities of a three-dimensional higher-order topological insulator. Phys Rev Lett. 2021;127:176601.
  • Zhang WX, Zou DY, Pei QS, et al. Experimental observation of higher-order topological Anderson insulators. Phys Rev Lett. 2021;126:146802.
  • Langbehn J, Peng Y, Trifunovic L, et al. Reflection-symmetric second-order topological insulators and superconductors. Phys Rev Lett. 2017;119:246401.
  • Park MJ, Kim Y, Cho GY, et al. Higher-order topological insulator in twisted bilayer graphene. Phys Rev Lett. 2019;123:216803.
  • Ezawa M. Topological switch between second-order topological insulators and topological crystalline insulators. Phys Rev Lett. 2018;121:116801.
  • Li H, Sun K. Pfaffian formalism for higher-order topological insulators. Phys Rev Lett. 2020;124:036401.
  • Hsu CH, Stano P, Klinovaja J, et al. Majorana Kramers pairs in higher-order topological insulators. Phys Rev Lett. 2018;121:196801.
  • Liu Y, Li YY, Rajput S, et al. Tuning dirac states by strain in the topological insulator Bi2Se3. Nat Phys. 2014;10:294–299.
  • Wray LA, Xu SY, Xia YQ, et al. A topological insulator surface under strong coulomb, magnetic and disorder perturbations. Nat Phys. 2011;7:32–37.
  • Sato T, Segawa KJ, Kosaka K, et al. Unexpected mass acquisition of dirac fermions at the quantum phase transition of a topological insulator. Nat Phys. 2011;7:840–844.
  • Fan YB, Kou XF, Upadhyaya P, et al. Electric-field control of spin-orbit torque in a magnetically doped topological insulator. Nat Nanotechnol. 2016;11:352–359.
  • Monserrat B, Vanderbilt D. Temperature effects in the band structure of topological insulators. Phys Rev Lett. 2016;117:226801.
  • Maghrebi MF, Gorshkov AV, Sau JD. Fluctuation-Induced Torque on a Topological Insulator out of Thermal Equilibrium. Phys Rev Lett. 2019;123:055901.
  • Lu HZ, Shen SQ. Finite-temperature conductivity and magnetoconductivity of topological insulators. Phys Rev Lett. 2014;112:146601.
  • Titum P, Lindner NH, Rechtsman MC, et al. Disorder-induced floquet topological insulators. Phys Rev Lett. 2015;114:056801.
  • Wray LA, Xu SY, Xia YQ, et al. Observation of topological order in a superconducting doped topological insulator. Nat Phys. 2010;6:855–859.
  • Xiu FX, He L, Wang Y, et al. Manipulating surface states in topological insulator nanoribbons. Nat Nanotechnol. 2011;6:216–221.
  • Autès G, Isaeva A, Moreschini L, et al. A novel quasi-one-dimensional topological insulator in bismuth iodide β-Bi4I4. Nat Mater. 2015;15:154.
  • Liu -C-C, Zhou -J-J, Yao YG, et al. Weak topological insulators and composite weyl semimetals: β-Bi4X4(X=Br,I). Phys Rev Lett. 2016;116:066801.
  • Noguchi R, Takahashi T, Kurodal K, et al. A weak topological insulator state in quasi-one-dimensional bismuth iodide. Nature. 2019;566:518.
  • Huang JW, Li S, Yoon C, et al. Room-temperature topological phase transition in quasi-one-dimensional material Bi4I4. Phys Rev X. 2021;11:031042.
  • Noguchi R, Kobayashi M, Jiang Z, et al. Evidence for a higher-order topological insulator in a three-dimensional material built from van der Waals stacking of bismuth-halide chains. Nat Mater. 2021;20:473–479.
  • Shumiya N, Hossain MS, Yin JX, et al. Room-temperature quantum spin hall edge state in a higher-order topological insulator Bi4Br4. arXiv:2110.05718. 2021; https://doi.org/10.48550/arXiv.2110.05718.
  • Yoon C, Liu CC, Min H, et al. Quasi-one-dimensional higher-order topological insulators. arXiv:2005.14710. 2020; https://doi.org/10.48550/arXiv.2005.14710.
  • Hsu CH, Zhou XT, Ma Q, et al. Purely rotational symmetry-protected topological crystalline insulator -Bi4Br4. 2D Mater. 2019;6:031004.
  • Li X, Chen DY, Jin ML, et al. Pressure-induced phase transitions and superconductivity in a quasi-1-dimensional topological crystalline insulator α-Bi4Br4. Pnas. 2019;116:17696.
  • Pisoni A, Gaál R, Zeugner A, et al. Pressure effect and superconductivity in the β-Bi4I4 topological insulator. Phys Rev B. 2017;95:235149.
  • Qi YP, Shi WJ, Werner P, et al. Pressure-induced superconductivity and topological quantum phase transitions in a quasi-one-dimensional topological insulator: bi4I4. Quantum Mater. 2018; 3: 4. 10.1038/s41535-018-0078-3
  • Wang XM, Wu JF, Wang JH, et al. Pressure-induced structural and electronic transitions in bismuth iodide. Phys Rev B. 2018;98:174112.
  • Deng SY, Song XQ, Shao XC, et al. First-principles study of high-pressure phase stability and superconductivity of Bi4I4. Phys Rev B. 2019;100:224108.
  • Zhou JJ, Feng W, Liu CC, et al. Large-gap quantum spin hall insulator in single layer bismuth monobromide Bi4Br4. Nano Lett. 2014;14:4767.
  • Zhou JJ, Feng W, Liu GB, et al. Topological edge states in single- and multi-layer Bi4Br4. New J Phys. 2015;17:015004.
  • Peng XL, Zhang X, Dong X, et al. Observation of topological edge states on α-bi4br4 nanowires grown on TiSe2 substrates. J Phys Chem Lett. 2021;12:10465–10471.
  • Yang M, Liu YD, Zhou W, et al. Large-gap quantum spin hall state and temperature-induced lifshitz transition in Bi4Br4. ACS Nano. 2022;16:3036–3044.
  • Zhuang JC, Li J, Liu YD, et al. Epitaxial growth of quasi-one-dimensional bismuth-halide chains with atomically sharp topological non-trivial edge states. ACS Nano. 2021;15:14850–14857.
  • Filatova TG, Gurin PV, Kloo L, et al. Electronic structure, galvanomagnetic and magnetic properties of the bismuth subhalides Bi4I4 and Bi4Br4. J Solid State Chem. 2007;180:1103.
  • Dikarev EV, Popovkin BA, Shevelkov AV. New polymolecular bismuth monohalides. Synthesis and crystal structures of Bi4BrxI4-x (x=1, 2, or 3. 2001;Russ. Chem. Bull. Int. Ed. 50:2304–2309. 10.1023/A:1015010907973
  • Schnering HGV, Benda HV, Kalveram C. Zur Kenntnis von BiBr und BiBr1.16. Z Anorg Allg Chem. 1978;438:37.
  • Chen DY, Ma DS, Li YK, et al. Quantum transport properties in single crystals of -Bi4I4. Phys Rev Mater. 2018;2:114408.
  • Wang PP, Tang FD, Wang P, et al. Quantum transport properties of -Bi4I4 near and well beyond the extreme quantum limit. Phys Rev B. 2021;103:155201.
  • Zhang RW, Zhang CW, Ji WX, et al. First-principles prediction on bismuthylene monolayer as a promising quantum spin Hall insulator. Nanoscale. 2017;9:8207.
  • Qiao L, Xiong XL, Yang HX, et al. Ultralong single-crystal α-Bi4Br4 nanobelts with a high current carrying capacity by mechanical exfoliation. J Phys Chem C. 2021;125:22312–22317.
  • Zhong JY, Yang M, Ye F, et al. Facet dependent topological phase transition in Bi4Br4. arXiv:2111.11007. 2021; https://doi.org/10.48550/arXiv.2111.11007.
  • Chen DY, Ma DS, Duan JX, et al. Quantum transport evidence of the boundary states and Lifshitz transition in Bi4Br4. arXiv:2203.06529. 2022; https://doi.org/10.48550/arXiv.2203.06529.
  • Liu YL, Chen RY, Zhang ZN, et al. Gate-tunable transport in quasi-one-dimensional α‑Bi4I4 field effect transistors. Nano Lett. 2022;22:1151–1158.
  • Mao PC, Han JF, Zheng JC, et al. Ultralong carrier lifetime of topological edge states in a-Bi4Br4. arXiv:2007.00264. 2020; https://doi.org/10.48550/arXiv.2007.00264.
  • Mao PC, Wang MY, Ma DS, et al. Observation of the topologically originated edge states in large-gap quasi-one-dimensional a-Bi4Br4. arXiv:2007.00223. 2020; https://doi.org/10.48550/arXiv.2007.00223.
  • Liu WJ, Xiong XL, Liu ML, et al. Bi4Br4-based saturable absorber with robustness at high power for ultrafast photonic device. Appl Phys Lett. 2022;120:053108.
  • Zhang X, Xing XW, Li J, et al. Controllable epitaxy of quasi-one-dimensional topological insulator -Bi4Br4 for the application of saturable absorber. Appl Phys Lett. 2022;120:093103.
  • Shi WJ, Wieder BJ, Meyerheim HL, et al. A charge-density-wave topological semimetal. Nat Phys. 2021;17:381.
  • Li XP, Deng K, Fu BT, et al. Type-III Weyl semimetals: (TaSe4)2I. Phys Rev B. 2021;103:L081402.
  • Lin C, Ochi M, Noguchi R, et al. Visualization of the strain-induced topological phase transition in a quasi-one-dimensional superconductor TaSe3. Nat Mater. 2021;20:1093.
  • Xu CQ, Liu Y, Cai PG, et al. Anisotropic transport and quantum oscillations in the quasi-one-dimensional TaNiTe 5 : evidence for the nontrivial band topology. J Phys Chem Lett. 2020;11:7782–7789.
  • Yuan YF, Wang WK, Zhou YH, et al. Pressure-induced superconductivity in topological semimetal candidate TaTe 4. Adv Electron Mater. 2020;6:1901260.
  • Kang L, Du X, Zhou JS, et al. Band-selective Holstein polaron in Luttinger liquid material A0.3MoO3 (A = K, Rb. Nat Commun. 2021;12:6183.
  • Tang FD, Ren YF, Wang PP, et al. Three-dimensional quantum Hall effect and metal–insulator transition in ZrTe5. Nature. 2019;569:537.
  • Liu X, Liu JY, Antipina LY, et al. Direct fabrication of functional ultrathin single-crystal nanowires from quasi-one-dimensional van der waals crystals. Nano Lett. 2016;16:6188–6195.