2,286
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Frequency domain interferometry for measuring ultrafast refractive index modulation and surface deformation

, &
Article: 2065218 | Received 10 Feb 2022, Accepted 06 Apr 2022, Published online: 26 Apr 2022

References

  • Kerremans R, Kaiser C, Li W, et al. The optical constants of solution-processed semiconductors—new challenges with perovskites and non-fullerene acceptors. Adv Opt Mater. 2020;8:2000319.
  • Bisschop S, Geiregat P, Aubert T, et al. The impact of core/shell sizes on the optical gain characteristics of CdSe/CdS quantum dots. ACS Nano. 2018;12:9011–34.
  • Dubey RS, Saravanan S, Kalainathan S. Performance enhancement of thin film silicon solar cells based on distributed Bragg reflector & diffraction grating. AIP Adv. 2014;4:127121.
  • Born M, Wolf E. Principles of optics. Seventh ed. Cambridge: Cambridge University Press; 1999.
  • ElAnzeery H, El Daif O, Buffière M, et al. Refractive index extraction and thickness optimization of Cu2ZnSnSe4 thin film solar cells. Phys Status Solidi (A) Appl Mater Sci. 2015;212:1984–1990.
  • Brandsrud MA, Lukacs R, Blűmel R, et al. Optimized solar cells based on changes in resonance structure as a function of the refractive index and the thickness. In: Freundlich A, Sugiyama M, Lombez L, editors. Physics, simulation, and photonic engineering of photovoltaic devices VIII. Bellingham, Washington USA: SPIE; 2019 February. p. 21.
  • Salehi A, Chen Y, Fu X, et al. Manipulating refractive index in organic light-emitting diodes. ACS Appl Mater Interfaces. 2018;10:9595–9601.
  • An KH, O’Connor B, Pipe KP, et al. Organic photodetector with spectral response tunable across the visible spectrum by means of internal optical microcavity. Organic Electron. 2009;10:1152–1157.
  • Yang G, Wang Z, Duan Y, et al. High-Performance organic photodetectors by introducing a non-fullerene acceptor to broaden long wavelength detective spectrum. Nanoscale Res Lett. 2019;14:201.
  • Tsai WS, Ting SY, Wei PK. Refractive index profiling of an optical waveguide from the determination of the effective index with measured differential fields. Opt Express. 2012;20:26766.
  • Ackert JJ, Doylend JK, Logan DF, et al. Defect-mediated resonance shift of silicon-on-insulator racetrack resonators. Opt Express. 2011;19:11969.
  • Lavrinenko A, Borel PI, Frandsen LH, et al. Comprehensive FDTD modelling of photonic crystal waveguide components. Opt Express. 2004;12:234.
  • Schwartz BT, Piestun R. Dynamic properties of photonic crystals and their effective refractive index. J Opt Soc Am B. 2005;22:2018.
  • Li H, Cui C, Xu X, et al. A review of characterization of perovskite film in solar cells by spectroscopic ellipsometry. Solar Energy. 2020;212:48–61.
  • Löper P, Stuckelberger M, Niesen B, et al. Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry. J Phys Chem Lett. 2015;6:66–71.
  • Nosidlak N, Jaglarz J, Danel A. Ellipsometric studies for thin polymer layers of organic photovoltaic cells. J Vacuum Sci Technol B. 2019;37:062402.
  • Chen LC, Chen JC, Chen CC, et al. Fabrication and properties of high-efficiency perovskite/PCBM organic solar cells. Nanoscale Res Lett. 2015;10:2–7.
  • Bennett BR, Soref RA, Del Alamo JA. Carrier-Induced change in refractive index of InP, GaAs, and InGaAsP. IEEE J Quantum Electron. 1990;26:113–122.
  • Hori T, Totani K, Hirata S, et al. Large refractive index variations induced by accumulating triplet excitons under photoexcitation at low power. Chem Phys Lett. 2018;704:5–10.
  • Boyd RW. Nonlinear optics. 2nd ed. New York: Elsevier; 2003.
  • Hasegawa T, Mouri SI, Yamada Y, et al. Giant photo-induced dielectricity in SrTiO3. J Phys Soc Jpn. 2003;72:41–44.
  • Margerie J, Moncorgé R, Nagtegaele P. Spectroscopic investigation of variations in the refractive index of a Nd:YAG laser crystal: experiments and crystal-field calculations. Phys Rev B Condens Matter Mater Phys. 2006;74:1–11.
  • Antipov OL, Bredikhin DV, Eremeykin ON, et al. Electronic mechanism for refractive index changes in intensively pumped Yb:YAG laser crystals. Opt Lett. 2006;31:763.
  • Shanks K, Senthilarasu S, Mallick TK. Optics for concentrating photovoltaics: trends, limits and opportunities for materials and design. Renew Sust Energ Rev. 2016;60:394–407.
  • Burkhard GF, Hoke ET, McGehee MD. Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells. Adv Mater. 2010;22:3293–3297.
  • Tahara H, Aharen T, Wakamiya A, et al. Photorefractive effect in organic–inorganic hybrid perovskites and its application to optical phase shifter. Adv Opt Mater. 2018 jun;6:1701366.
  • Berera R, van Grondelle R, Kennis JT. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. Photosynth Res. 2009;101:105–118.
  • Chandrabose S, Chen K, Barker AJ, et al. High exciton diffusion coefficients in fused ring electron acceptor films. J Am Chem Soc. 2019;141:6922–6929.
  • Yang Y, Yang M, Li Z, et al. Comparison of recombination dynamics in CH3NH3PbBr3 and CH3NH3PbI3 perovskite films: influence of exciton binding energy. J Phys Chem Lett. 2015;6:4688–4692.
  • Price MB, Butkus J, Jellicoe TC, et al. Hot-carrier cooling and photoinduced refractive index changes in organic-inorganic lead halide perovskites. Nat Commun. 2015;6:1–8.
  • Peng B, Yu G, Liu X, et al. Ultrafast charge transfer in MoS2/WSe2 p-n heterojunction. 2d Mater. 2016;3:025020.
  • Chen YH, Tamming RR, Chen K, et al. Bandgap control in two-dimensional semiconductors via coherent doping of plasmonic hot electrons. Nat Commun. 2021 dec;12:4332.
  • Tamming RR, Butkus J, Price MB, et al. Ultrafast spectrally resolved photoinduced complex refractive index changes in CsPbBr3 perovskites. ACS Photonics. 2019 feb;6:345–350.
  • Pasanen HP, Vivo P, Canil L, et al. Refractive index change dominates the transient absorption response of metal halide perovskite thin films in the near infrared. Phys Chem Chem Phys. 2019;21:14663–14670.
  • Ashoka A, Tamming RR, Girija AV, et al. Extracting quantitative dielectric properties from pump-probe spectroscopy. Nat Commun. 2022 dec;13:1437.
  • Reichert M, Zhao P, Reed JM, et al. Beam deflection measurement of bound-electronic and rotational nonlinear refraction in molecular gases. Opt Express. 2015;23:22224.
  • Heidecker E, Schäfer JH, Uhlenbusch J, et al. Time-resolved study of a laser-induced surface plasma by means of a beam-deflection technique. J Appl Phys. 1988;64:2291–2297.
  • Zhai G, Ma C, Xiang J, et al. Mid-infrared transient reflectance study of the Dirac semimetal Cd3As2 under strong optical pumping. Phys Rev B. 2020;101:1–12.
  • Bulutay C, Turgut CM, Zakhleniuk NA. Carrier-induced refractive index change and optical absorption in wurtzite InN and GaN: full-band approach. Phys Rev B. 2010 apr;81:155206.
  • Tanghe I, Butkus J, Chen K, et al. Broadband optical phase modulation by colloidal CdSe quantum wells. Nano Lett. 2021;22:58–64.
  • Tokunaga E, Kobayashi T, Terasaki A. Frequency-domain interferometer for femtosecond time-resolved phase spectroscopy. Opt Lett. 1992 aug;17:1131.
  • Antipov OL, Kuzhelev AS, Chausov DV, et al. Dynamics of refractive-index changes in a Nd:YAG laser crystal under excitation of Nd3+ ions. J Opt Soc Am B. 1999;16:1072.
  • Ye SW, Yuan F, Zou XH, et al. High-speed optical phase modulator based on graphene-silicon waveguide. IEEE J Sel Top Quantum Electron. 2017;23:76–80.
  • Wang Y, Zhang F, Tang X, et al. All-Optical phosphorene phase modulator with enhanced stability under ambient conditions. Laser Photon Rev. 2018;12:1–9.
  • Tokunaga E, Terasaki A, Kobayashi T. Femtosecond time-resolved dispersion relations studied with a frequency-domain interferometer. Phys Rev A. 1993;47:4581–4584.
  • Sheik-Bahae M, Said A, Van Stryland E. High-sensitivity, single-beam n2 measurements. Opt Lett. 1989;14:955.
  • Ferdinandus MR, Reichert M, Ensley TR, et al. Dual-arm Z-scan technique to extract dilute solute nonlinearities from solution measurements. Opt Mater Express. 2012;2:1776.
  • Mendoza-Alvarez JG, Yan RH, Coldren LA. Contribution of the band-filling effect to the effective refractive-index change in double-heterostructure GaAs/AlGaAs phase modulators. J Appl Phys. 1987;62:4548–4553.
  • Paskov PP, Pavlov LI. Calculation of the carrier-induced refractive index change in InSb. Appl Phys B Photophys Laser Chem. 1992;54:113–118.
  • Jackson WB, Amer NM, Boccara AC, et al. Photothermal deflection spectroscopy and detection. Appl Opt. 1981;20:1333.
  • Spear JD, Russo RE. Transverse photothermal beam deflection within a solid. J Appl Phys. 1991;70:580–586.
  • Ferdinandus MR, Hu H, Reichert M, et al. Beam deflection measurement of time and polarization resolved nonlinear refraction. Optics InfoBase Conference Papers; Orlando, Florida United States. 2013;38:3518–3521. ISBN: 978-1-55752-987-9.
  • Albrecht HS, Heist P, Kleinschmidt J, et al. Ultrafast beam-deflection method and its application for measuring the transient refractive index of materials. Appl Phys B Photophys Laser Chem. 1993;57:193–197.
  • Hagan DJ, Zhao P, Benis SA, et al. Measurement of the dynamics of nonlinear refraction and absorption via nonlinear beam deflection (Conference Presentation). In: Eich M, Nunzi JM, Schuller JA, et al., editors. Light manipulating organic materials and devices IV. Vol. 10360, International Society for Optics and Photonics. SPIE; 2017. DOI:10.1117/12.2275588.
  • Sarantos CH, Heebner JE. Ultrafast optical beam deflection in a GaAs planar waveguide by a transient, optically-induced prism array. Optics InfoBase Conference Papers, Newport Beach, CA, United States. 2008; 38:5–7.
  • Liang L, Tian J, Wang T, et al. Ultrafast optical beam deflection in a pump probe configuration. Chin Phys B. 2016;25:0–8.
  • Wolpert C, Dicken C, Atkinson P, et al. Transient reflection: a versatile technique for ultrafast spectroscopy of a single quantum dot in complex environments. Nano Lett. 2012;12:453–457. PMID: 22171984.
  • Wang XD, Huang YH, Liao JF, et al. Surface passivated halide perovskite single-crystal for efficient photoelectrochemical synthesis of dimethoxydihydrofuran. Nat Commun. 2021;12:1–9.
  • Visco A, Drake RP, Froula DH, et al. Temporal dispersion of a spectrometer. Rev Sci Instrum. 2008;79:10F545.
  • Thorn KE, Monahan NR, Prasad SKK, et al. Efficient and tunable spectral compression using frequency-domain nonlinear optics. Opt Express. 2018;26:28140.
  • Misawa K, Kobayashi T. Femtosecond Sagnac interferometer for phase spectroscopy. Opt Lett. 1995;20:1550.
  • Klimov VI, McBranch DW, Klimov VI. Femtosecond high-sensitivity, chirp-free transient absorption spectroscopy using kilohertz lasers. Opt Lett. 1998;23:277.
  • Megerle U, Pugliesi I, Schriever C, et al. Sub-50 fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on solid ground. Appl Phys B. 2009;96:215–231.
  • Tamming RR, Lin CY, Chen K, et al. Multiple-plate compression used in transient absorption spectroscopy. In: 14th Pacific Rim Conference on Lasers and Electro-Optics (CLEO PR 2020), Sydney, Australia; 2020; Optical Society of America; p. C6B4.
  • Brigham EO, Morrow RE. The fast Fourier transform. IEEE Spectrum. 1967 dec;4:63–70.
  • Zhong J, Zeng H. Multiscale windowed Fourier transform for phase extraction of fringe patterns. Appl Opt. 2007;46:2670–2675.
  • Huang L, Kemao Q, Pan B, et al. Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry. Opt Lasers Eng. 2010;48:141–148.
  • Chandezon J, Rampnoux JM, Dilhaire S, et al. In-line femtosecond common-path interferometer in reflection mode. Opt Express. 2015 oct;23:27011.
  • Geindre JP, Audebert P, Rousse A, et al. Frequency-domain interferometer for measuring the phase and amplitude of a femtosecond pulse probing a laser-produced plasma. Opt Lett. 1994;19:1997–1999.
  • Blanc P, Audebert P, Falli`es F, et al. Phase dynamics of reflected probe pulses from sub-100-fs laser-produced plasmas. J Opt Soc Am B. 1996;13:118.
  • Deneuville F, Chimier B, Descamps D, et al. Sub-picosecond and nanometer scale dynamics of aluminum target surface heated by ultrashort laser pulse. Appl Phys Lett. 2013;102:194104.
  • Fedorov N, Beaulieu S, Belsky A, et al. Aurore: a platform for ultrafast sciences. Rev Sci Instrum. 2020;91:105104.
  • Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009;131:6050–6051.
  • Min H, Lee DY, Kim J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature. 2021;598:444–450.
  • Xing G, Mathews N, Lim SS, et al. Low-temperature solution-processed wavelength tunable perovskites for lasing. Nat Mater. 2014;13:476–480.
  • Stoumpos CC, Cao DH, Clark DJ, et al. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem Mater. 2016 apr;28:2852–2867.
  • Vashishtha P, Metin DZ, Cryer ME, et al. Shape-, size-, and composition-controlled thallium lead halide perovskite nanowires and nanocrystals with tunable band gaps. Chem Mater. 2018;30:2973–2982.
  • Geiregat P, Maes J, Chen K, et al. Using bulk-like nanocrystals to probe intrinsic optical gain characteristics of inorganic lead halide perovskites. ACS Nano. 2018;12:10178–10188.
  • Manser JS, Kamat PV. Band filling with free charge carriers in organometal halide perovskites. Nat Photonics. 2014;8:737–743.
  • Niesner D, Zhu H, Miyata K, et al. Persistent energetic electrons in methylammonium lead iodide perovskite thin films. J Am Chem Soc. 2016;138:15717–15726.
  • Kahmann S, Loi MA. Hot carrier solar cells and the potential of perovskites for breaking the Shockley-Queisser limit. J Mater Chem C. 2019;7:2471–2486.
  • Ahmed I, Shi L, Pasanen H, et al. There is plenty of room at the top: generation of hot charge carriers and their applications in perovskite and other semiconductor-based optoelectronic devices. Light Sci Appl. 2021;10. DOI:10.1038/s41377-021-00609-3.
  • Ghosh T, Aharon S, Shpatz A, et al. Reflectivity effects on pump-probe spectra of lead halide perovskites: comparing thin films versus nanocrystals. ACS Nano. 2018;12:5719–5725.
  • Even J, Pedesseau L, Katan C. Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites. J Phys Chem C. 2014;118:11566–11572.
  • Wang Z, Lin Q, Wenger B, et al. High irradiance performance of metal halide perovskites for concentrator photovoltaics. Nature Energy. 2018;3:855–861.
  • Yang Y, Ostrowski DP, France RM, et al. Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nat Photonics. 2016;10:53–59.
  • Fu J, Xu Q, Han G, et al. Hot carrier cooling mechanisms in halide perovskites. Nat Commun. 2017;8. DOI:10.1038/s41467-017-01360-3.
  • Inoue D, Ichikawa T, Kawasaki A, et al. Silicon optical modulator using a low-loss phase shifter based on a multimode interference waveguide. Micromachines. 2019;10:482.
  • Sturm C, Tanese D, Nguyen HS, et al. All-optical phase modulation in a cavity-polariton Mach-Zehnder interferometer. Nat Commun. 2014;5:1–7.
  • Yu J, Chen R. Optical properties and applications of two-dimensional CdSe nanoplatelets. InfoMat. 2020;2:905–927.
  • Mathan Kumar K, John Peter A, Lee CW. Optical absorption and refraction index change of a confined exciton in a spherical quantum dot nanostructure. Eur Phys J B. 2011;84:431–438.
  • Diroll BT, Chen M, Coropceanu I, et al. Polarized near-infrared intersubband absorptions in CdSe colloidal quantum wells. Nat Commun. 2019;10. DOI:10.1038/s41467-019-12503-z.
  • Martinez P, Blanchet V, Descamps D, et al. Sub-Picosecond non-equilibrium states in the amorphous phase of GeTe phase-change material thin films. Adv Mater. 2021;2102721:2102721.
  • Tanimura H, Watanabe S, Ichitsubo T. Nonthermal dynamics of dielectric functions in a resonantly bonded photoexcited material. Adv Funct Mater. 2020;30:1–8.
  • Behrens M, Lotnyk A, Bryja H, et al. Structural transitions in Ge2Sb2Te5 phase change memory thin films induced by nanosecond UV optical pulses. Materials. 2020 may;13:2082.
  • Waldecker L, Miller TA, Rudé M, et al. Time-domain separation of optical properties from structural transitions in resonantly bonded materials. Nat Mater. 2015;14:991–995.
  • Michel AKU, Sousa M, Yarema M, et al. Optical properties of amorphous and crystalline GeTe nanoparticle thin films: a phase-change material for tunable photonics. ACS Appl Nano Mater. 2020;3:4314–4320.
  • Tamming RR, Lin CY, Hodgkiss JM, et al. Single 3.3 fs multiple plate compression light source in ultrafast transient absorption spectroscopy. Sci Rep. 2021;11:1–8.
  • Cheng YC, Lu CH, Lin YY, et al. Supercontinuum generation in a multi-plate medium. Opt Express. 2016;24:7224.
  • Lu CH, Wu WH, Kuo SH, et al. Greater than 50 times compression of 1030 nm Yb:KGW laser pulses to single-cycle duration. Opt Express. 2019;27:15638.
  • Hariharan P. Basics of Interferometry. second ed. London: Elsevier Inc.; 2007.
  • Bradler M, Riedle E. Temporal and spectral correlations in bulk continua and improved use in transient spectroscopy. J Opt Soc Am B. 2014;31:1465–1475.
  • Dobryakov AL, Kovalenko SA, Weigel A, et al. Femtosecond pump/supercontinuum-probe spectroscopy: optimized setup and signal analysis for single-shot spectral referencing. Rev Sci Instrum. 2010;81:113106.
  • Lu CH, Witting T, Husakou A, et al. Sub-4 fs laser pulses at high average power and high repetition rate from an all-solid-state setup. Opt Express. 2018;26:8941.
  • Lu CH, Tsou YJ, Chen HY, et al. Generation of intense supercontinuum in condensed media. Optica. 2014;1:400.
  • Ehrler B, Yanai N, Nienhaus L. Up And down-conversion in molecules and materials. J Chem Phys. 2021;154:070401.
  • Yamamoto H, Tanaka S, Naito T, et al. Nonlinear change of refractive index of Co3O4 thin films induced by semiconductor laser (λ=405nm) irradiation. Appl Phys Lett. 2002;81:999–1001.
  • Hlubina P, Luňaček J, Ciprian D, et al. Phase retrieval from the spectral interferograms by windowed Fourier transform. Optical Micro Nanometrol Microsys Technol II. 2008;6995:69950Z.
  • Kravets VG, Wu F, Auton GH, et al. Measurements of electrically tunable refractive index of MoS2 monolayer and its usage in optical modulators. Npj 2D Mater Appl. 2019 dec;3:36.
  • Grundmann M. The physics of semiconductors. 3rd ed. Graduate Texts in Physics. Cham: Springer International Publishing; 2016.
  • Rangel-Rojo R, Castelo A, Flores-Arias MT, et al. Refractive index modification in glass by laser backwriting ablation of metals. Opt Express. 2006;14:8765.
  • Petrovic J. Durability of the refractive index change induced by a single femtosecond laser pulse in glass. Optical Mater X. 2019;1:100004.
  • Feng T, Chen G, Han H, et al. Femtosecond-laser-ablation dynamics in silicon revealed by transient reflectivity change. Micromachines. 2022;13:1–10.
  • Gavrilović MR. Impact of the cavitation bubble on a plasma emission following laser ablation in liquid. Eur Phys J D. 2017;71. DOI:10.1140/epjd/e2017-80282-7
  • Reshef O, De Leon I, Alam MZ, et al. Nonlinear optical effects in epsilon near-zero media. Nat Rev Mater. 2019 aug;4:535–551.
  • Lee YU, Garoni E, Kita H, et al. Strong nonlinear optical response in the visible spectral range with epsilon-near-zero organic thin films. Adv Opt Mater. 2018;6:1–12.
  • Zhou Y, Alam MZ, Karimi M, et al. Broadband frequency translation through time refraction in an epsilon-near-zero material. Nat Commun. 2020;11. Available from. DOI:10.1038/s41467-020-15682-2.
  • Boyd RW. Physics and applications of epsilon-near-zero materials. In: OSA advanced photonics congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF). Optical Society of America, Nonlinear Photonics 2020, Washington, DC United States; 2020. p. NpTh2D.1. ISBN: 978-1-943580-79-8.
  • Alu` A, Silveirinha MG, Salandrino A, et al. Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys Review B Conden Matter Mater Phys. 2007;75:1–13.
  • Fleming SC, Whitley TJ. Measurement of pump induced refractive index change in erbium doped fibre amplifier. Electron Lett. 1991;27:1959–1961.
  • Kirkby PA, Goodwin AR, Thompson GH, et al. Observations of self-focusing in stripe geometry semiconductor lasers and the development of a comprehensive model of their operation. IEEE J Quantum Electron. 1977;13:705–719.
  • Vcsels MR. Fundamentals, technology and applications of vertical-cavity surface-emitting lasers. Vol. 166. Springer Series in Optical Sciences. Berlin Heidelberg: Springer Berlin Heidelberg; 2013.