361
Views
0
CrossRef citations to date
0
Altmetric
Original Scholarship - Empirical Papers

Designing healthy edible cities: investigating the environmental and spatial factors affecting urban fruit safety

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 29 Oct 2023, Accepted 02 May 2024, Published online: 20 May 2024

References

  • Ademoroti, C.M.A., 1986. Levels of heavy metals on bark and fruit of trees in Benin City, Nigeria. Environmental pollution series B, chemical and physical, 11 (4), 241–253. doi:10.1016/0143-148X(86)90043-1.
  • Amani-Beni, M., et al. 2022. Socio-cultural appropriateness of the use of historic Persian gardens for modern urban edible gardens. Land, 11, 38. doi:10.3390/land11010038.
  • Antisari, L.V., et al. 2015. Heavy metal accumulation in vegetables grown in urban gardens. Agronomy for sustainable development, 35 (3), 1139–1147. doi:10.1007/s13593-015-0308-z.
  • Audate, P.P., et al. 2019. Scoping review of the impacts of urban agriculture on the determinants of health. BMC public health, 19 (1), 672. doi:10.1186/s12889-019-6885-z.
  • Awino, F.B., et al. 2022. Comparison of metal bioaccumulation in crop types and consumable parts between two growth periods. Integrated environmental assessment and management, 18 (4), 1056–1071. doi:10.1002/ieam.4513.
  • Baldauf, R., 2017. Roadside vegetation design characteristics that can improve local, near-road air quality. Transportation research part D: Transport and environment, 52, 354–361. doi:10.1016/j.trd.2017.03.013.
  • Cooper, A.M., et al. 2020. Monitoring and mitigation of toxic heavy metals and arsenic accumulation in food crops: a case study of an urban community garden. Plant direct, 4 (1). doi:10.1002/pld3.198.
  • Demirhan Aydın, Ş. and Pakyürek, M., 2020. Heavy metal accumulation potential in pomegranate fruits and leaves grown in roadside orchards. PeerJ, 8, e8990. doi:10.7717/peerj.8990.
  • Ghoochani, M., et al. 2018. What do we know about exposure of Iranians to cadmium? Findings from a systematic review. Environmental science and pollution research, 25 (1), 1–11. doi:10.1007/s11356-017-0863-8.
  • Gori, A., Ferrini, F., and Fini, A., 2019. Growing healthy food under heavy metal pollution load: overview and major challenges of tree based edible landscapes. Urban forestry and urban greening, 38, 403–406. doi:10.1016/j.ufug.2019.01.010.
  • Hashisho, Z. and El-Fadel, M., 2004. Impacts of traffic-induced lead emissions on air, soil and blood lead levels in Beirut. Environmental monitoring and assessment, 93 (1–3), 185–202. doi:10.1023/B:EMAS.0000016804.88534.34.
  • Hjortenkrans, D.S.T., Bergbäck, B.G., and Häggerud, A.V., 2008. Transversal immission patterns and leachability of heavy metals in road side soils. Journal of environmental monitoring, 10 (6), 739. doi:10.1039/b804634d.
  • Jalali, M. and Peikam, E.N., 2022. Measuring and simulating the effect of acid rain on cations leaching from calcareous soil of western Iran. Arabian journal of geosciences, 15 (13), 1194. doi:10.1007/s12517-022-10397-8.
  • Kazemi, F. and Hosseinpour, N., 2022. GIS-based land-use suitability analysis for urban agriculture development based on pollution distributions. Land use policy, 123, 106426. doi:10.1016/j.landusepol.2022.106426.
  • Madejon, P., Maranon, T., and Murillo, J., 2006. Biomonitoring of trace elements in the leaves and fruits of wild olive and holm oak trees. Science of the total environment, 355 (1–3), 187–203. doi:10.1016/j.scitotenv.2005.02.028.
  • Przybysz, A., et al. 2020. Particulate matter accumulation on apples and plums: roads do not represent the greatest threat. Agronomy, 10 (11), 1709. doi:10.3390/agronomy10111709.
  • Querol, X., et al. 2007. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmospheric environment, 41 (34), 7219–7231. doi:10.1016/j.atmosenv.2007.05.022.
  • Rodushkin, I., et al. 2008. Levels of inorganic constituents in raw nuts and seeds on the Swedish market. Science of the total environment, 392 (2–3), 290–304. doi:10.1016/j.scitotenv.2007.11.024.
  • Romanova, O. and Lovell, S., 2021. Food safety considerations of urban agroforestry systems grown in contaminated environments. Urban agriculture and regional food systems, 6 (1). doi:10.1002/uar2.20008.
  • Russo, A., et al. 2017. Edible green infrastructure: an approach and review of provisioning ecosystem services and disservices in urban environments. Agriculture, ecosystems & environment, 242, 53–66. doi:10.1016/j.agee.2017.03.026.
  • Samsøe-Petersen, L., et al. 2002. Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils. Environmental science & technology, 36 (14), 3057–3063. doi:10.1021/es015691t.
  • Säumel, I., et al. 2012. How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany. Environmental pollution, 165, 124–132. doi:10.1016/j.envpol.2012.02.019.
  • Sevik, H., et al. 2020. Changes in heavy metal accumulation in some edible landscape plants depending on traffic density. Environmental monitoring and assessment, 192 (2), 78. doi:10.1007/s10661-019-8041-8.
  • Statistical Center of Iran, 2017. Iran statistical yearbook. Tehran, Iran. https://old.sci.org.ir/english/Iran-Statistical-Yearbook/Statistical-Yearbook-2017-2018.
  • von Hoffen, L.P. and Säumel, I., 2014. Orchards for edible cities: cadmium and lead content in nuts, berries, pome and stone fruits harvested within the inner city neighbourhoods in Berlin, Germany. Ecotoxicology & environmental safety, 101, 233–239. doi:10.1016/j.ecoenv.2013.11.023.
  • Ward, N.I. and Savage, J.M., 1994. Metal dispersion and transportational activities using food crops as biomonitors. Science of the total environment, 146–147, 309–319. doi:10.1016/0048-9697(94)90251-8.
  • Wyttenbach, A. and Tobler, L., 1998. Effect of surface contamination on results of plant analysis. Communications in soil science and plant analysis, 29 (7–8), 809–823. doi:10.1080/00103629809369987.
  • Zamani, N., et al. 2020. A preliminary report on the largest ongoing outbreak of lead toxicity in Iran. Scientific reports, 10 (1), 11797. doi:10.1038/s41598-020-64859-8.