487
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Spatial Development in the European Alps: Topographic Potential Area as a Basic Indicator for Policy Debates

References

  • Bender, O., and A. Haller. 2017. The cultural embeddedness of population mobility in the Alps: Consequences for sustainable development. Norsk Geografisk Tidsskrift – Norwegian Journal of Geography 71 (3):132–45. doi:10.1080/00291951.2017.1317661.
  • Bertram, D., and T. Chilla. 2022. Polycentricity and accessibility in mountain areas: The Alpine case. European Planning Studies 1–21. doi:10.1080/09654313.2022.2145874.
  • Bertram, D., T. Chilla, and S. Hippe. 2023. Cross-border mobility: Rail or road? Space-time-lines as an evidence base for policy debates. Journal of Borderlands Studies 1–18. doi:10.1080/08865655.2023.2249917.
  • Bertram, D., T. Chilla, and M. Lambracht. 2023. The Alpine settlement system: Capturing relevance beyond size. Journal of Maps 19 (1): 1–6. doi:10.1080/17445647.2022.2164229.
  • Cavallaro, F., and A. Dianin. 2020. Cross-border public transport as a driver for tourism in the Alps. Transportation Research Procedia 48 (2):2446–61. doi:10.1016/j.trpro.2020.08.262.
  • Chilla, T., D. Bertram, and M. Lambracht. 2022. Alpine towns – Key to sustainable development in the Alpine region. Part 1: Facts, maps and scientific debates. 9th Report on the State of the Alps. 1-56 doi:10.13140/RG.2.2.36022.98880/1.
  • Chilla, T., and M. Lambracht. 2022. Land take in the Alpine region: The data perspective. Contribution to IP_S2, Step 1 of the Alpine climate target system. https://www.alpconv.org/fileadmin/user_upload/Organisation/TWB/SPSD/CDR_ACTS_IP_S3_1a_Land_Take_Data.pdf.
  • Chilla, T., and A. Heugel. 2022. Cross-border commuting dynamics: Patterns and driving forces in the Alpine macro-region. Journal of Borderlands Studies 37 (1):17–35. doi:10.1080/08865655.2019.1700822.
  • Dax, T., and P. Hellegers. 2000. Policies for less-favoured areas. In CAP regimes and the European countryside, prospects for integration between agricultural, regional and environmental policies, ed. Brouwer, F. and P. Lowe, 179–97. Wallingford: CAB International.
  • Debarbieux, B., and M. Price. 2008. Representing mountains: From local and national to global common good. Geopolitics 13 (1):148–68. doi:10.1080/14650040701783375.
  • Dematteis, G. 2018. The alpine metropolitan-mountain faced with global challenges. Reflections on the case of turin. Journal of Alpine Research|Revue De Géographie Alpine 106 (2):1-13. doi:10.4000/rga.4402.
  • ESTAT (Eurostat – European Statistical Office). 2023. Conversion of DN in ‘SLOP’ files into degrees off horizontal of the surface tangent. https://ec.europa.eu/eurostat/documents/7116161/7172326/SPEC011-b140109-SLOP.pdf
  • FLF (Forschungszentrum für landwirtschaftliche Fernerkundung und Julius Kühn-Institut). 2017. Geodatenprodukte: Hangneigung. https://flf.julius-kuehn.de/webdienste/webdienste-des-flf/hangneigung.html.
  • Funnell, D., and M. Price. 2003. Mountain geography: A review. Geographical Journal 169 (3):183–90. https://www.jstor.org/stable/3451445. doi:10.1111/1475-4959.00083.
  • Gastner, M., and M. Newman. 2004. Diffusion-based method for producing density-equalizing maps. Proceedings of the National Academy of Sciences 101 (20):7499–504. doi:10.1073/pnas.0400280101.
  • Goodchild, M. 2018. Reimagining the history of GIS. Annals of GIS 24 (1):1–8. doi:10.1080/19475683.2018.1424737.
  • Gorsevski, P., P. Gessler, and P. Jankowski. 2003. Integrating a fuzzy k-means classification and a Bayesian approach for spatial prediction of landslide hazard. Journal of Geographical Systems 5 (3):223–51. doi:10.1007/s10109-003-0113-0.
  • Greenlee, D. 1987. Raster and vector processing for scanned linework. Photogrammetric Engineering and Remote Sensing 53 (10):1383–7.
  • Jarasiunas, G. 2016. Assessment of the agricultural land under steep slope in Lithuania. Journal of Central European Agriculture 17 (1):176–87. doi:10.5513/JCEA01/17.1.1688.
  • Jensen, T., and J. Sandström. 2020. Organizing rocks. Actor-network theory and space. Organization 27 (5):701–16. doi:10.1177/1350508419842715.
  • Job, H., C. Meyer, O. Coronado, S. Koblar, P. Laner, A. Omizzolo, G. Plassmann, W. Riedler, P. Vesely, and A. Schindelegger. 2022. Open spaces in the European Alps – GIS-based analysis and implications for spatial planning from a transnational perspective. Land 11 (9):1605. doi:10.3390/land11091605.
  • Kohler, T., J. Balsiger, G. Rudaz, B. Debarbieux, D. Pratt, and D. Maselli. 2015. Green Economy and Institutions for Sustainable Mountain Development: From Rio 1992 to Rio 2012 and beyond. Bern, Switzerland, Centre for Development and Environment (CDE), Swiss Agency for Development and Cooperation (SDC), University of Geneva and Geographica Bernensia: 1-144. doi:10.13140/RG.2.1.4376.9440.
  • Latour, B. 1999. On recalling ANT. In Actor network theory and after, ed. Law J. and J. Hassard, 15–25. Oxford: Blackwell Publishers.
  • Peuquet, D. 1981. An examination of techniques for reformatting digital cartographic data, part 1: The raster-ta-vector process. Cartographica: The International Journal for Geographic Information and Geovisualization 18 (1):34–48. doi:10.3138/VL12-8581-0733-0Q11.
  • Pirasteh, S., and J. Li. 2017. Landslides investigations from geoinformatics perspective: Quality, challenges, and recommendations. Geomatics, Natural Hazards and Risk 8 (2):448–65. doi:10.1080/19475705.2016.1238850.
  • Price, M., T. Arnesen, E. Gløersen, and M. Metzger. 2019. Mapping mountain areas: Learning from Global, European and Norwegian perspectives. Journal of Mountain Science 16 (1):1–15. doi:10.1007/s11629-018-4916-3.
  • Price, M., W. Gurgiser, I. Juen, C. Adler, S. Wymann von Dach, G. Kaser, and S. Mayr. 2022. The International Mountain Conference, Innsbruck, Austria, September 2019 (IMC2019): A Synthesis with Recommendations for Research. Mountain Research and Development 42 (1):A1–A16. doi:10.1659/MRD-JOURNAL-D-21-00027.1.
  • Qiu, H., Y. Zhu, W. Zhou, H. Sun, J. He, and Z. Liu. 2022. Influence of DEM resolution on landslide simulation performance based on the Scoops3D model. Geomatics, Natural Hazards and Risk 13 (1):1663–81. doi:10.1080/19475705.2022.2097451.
  • Saleem, N., M. Huq, N. Twumasi, A. Javed, and A. Sajjad. 2019. Parameters derived from and/or used with digital elevation models (DEMs) for landslide susceptibility mapping and landslide risk assessment: a review. ISPRS International Journal of Geo-Information, 8 (12):1–25. doi:10.3390/ijgi8120545.
  • Sanap, R., and V. Sapate. 2020. Analysis of building on sloping ground. International Journal for Research in Applied Science and Engineering Technology 8 (6):513–9. doi:10.22214/ijraset.2020.6079.
  • Sofia, G. 2020. Combining geomorphometry, feature extraction techniques and earthsurface processes research: The way forward. Geomorphology 355:107055. doi:10.1016/j.geomorph.2020.107055.
  • Van Gelder, P., F. Nadim, and C. G. Soares. 2010. Risk assessment of natural hazards with applications to landslides and abnormal waves. In Safety and Reliability of Industrial Products, Systems and Structures, ed. Guedes Soares, C. London: Taylor & Francis Group. doi:10.1201/b10572.
  • Viles, H. 2016. Technology and geomorphology: Are improvements in data collection techniques transforming geomorphic science? Geomorphology 270:121–33. doi:10.1016/j.geomorph.2016.07.011.